Logistics Report

for a

DETAILED AIRBORNE MAGNETIC, RADIOMETRIC AND DIGITAL ELEVATION SURVEY

for the

FLINDERS ISLAND PROJECT

carried out on behalf of

GEOSCIENCE AUSTRALIA

by

(UTS Job #A827)

FAUNTLEROY AVENUE, PERTH AIRPORT PO BOX 126, BELMONT WA 6984 Telephone +61 8 9479 4232 Facsimile +61 8 9479 7361 A.B.N. 31 058 054 603

TABLE OF CONTENTS

1	GENERAL SURVEY INFORMATION				
2	SUI	RVEY LOCATION	3		
3	AIF	RCRAFT AND SURVEY EQUIPMENT	4		
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12	SURVEY AIRCRAFT DATA POSITIONING AND FLIGHT NAVIGATION UTS DATA ACQUISITION SYSTEM AND DIGITAL RECORDING ALTITUDE READINGS UTS STINGER MOUNTED MAGNETOMETER SYSTEM TOTAL FIELD MAGNETOMETER THREE COMPONENT VECTOR MAGNETOMETER AIRCRAFT MAGNETIC COMPENSATION DIURNAL MONITORING MAGNETOMETER BAROMETRIC ALTITUDE TEMPERATURE AND HUMIDITY RADIOMETRIC DATA ACQUISITION			
4	PE	RADOMETRIC DATA ACCONSISTOR			
5	4.1 4.2 SUI	Field Operations Project Management IRVEY PARAMETERS	11 11		
6	SUI	RVEY LOGISTICS	13		
	6.1	DIURNAL MAGNETOMETER LOCATIONS	13		
7	DA	ATA PROCESSING PROCEDURES	14		
A	7.1 7.2 7.3 7.4 PPEN	DATA PRE-PROCESSING MAGNETIC DATA PROCESSING RADIOMETRIC DATA PROCESSING DIGITAL ELEVATION MODEL DATA PROCESSING IDIX A - LOCATED DATA FORMATS			
A	PPEN	DIX B - COORDINATE SYSTEM DETAILS	26		
A	PPEN	DIX C - SURVEY BOUNDARY DETAILS	27		
A	PPEN	DIX D - PROJECT DATA OVERVIEW			
A	PPFN	IDIX E – RADIOMETRIC CALIBRATION RESULTS			
	1 1 121 1				
A	PPEN	DIX F – ACQUISITION AND PROCESSING PARAMETERS			

1 GENERAL SURVEY INFORMATION

From January 2007 to March 2007, UTS Geophysics conducted a low level airborne geophysical survey for the following company:

<u>Geoscience Australia</u> Cnr Jerrabomberra Ave and Hindmarsh Drive Symonston Canberra ACT 2609

Acquisition for this survey commenced on the 9th January 2007 and was completed on the 27th March 2007.

2 SURVEY LOCATION

The survey was contained within the Flinders Island Special 1:250,000 map sheet. Survey boundary coordinates are provided in Appendix C of this report.

The survey was flown using the MGA94 coordinate system (a Universal Transverse Mercator projection) derived from the Geocentric Datum of Australia and was acquired in zone 55 with a central meridian of 147 degrees. Details of the datum and projection system are provided in Appendix B of this report.

3 AIRCRAFT AND SURVEY EQUIPMENT

The UTS navigation flight control computer, data acquisition system and geophysical sensors were installed into a specialised geophysical survey aircraft.

The list of geophysical and navigation equipment used for the survey is as follows:

General Survey Equipment

- Cessna 210 fixed wing survey aircraft.
- UTS proprietory flight planning and survey navigation system.
- UTS proprietory high speed digital data acquisition system.
- Novatel 39xx series, 12 channel precision navigation GPS.
- Omnistar Omnilite 132 real time differential GPS system.
- UTS LCD pilot navigation display and external track guidance display.
- UTS post mission data verification and processing system.
- Bendix King KRA-10 radar altimeter.

Magnetic Data Acquisition Equipment

- UTS tail stinger magnetometer installation.
- Scintrex Cesium Vapour CS-2 total field magnetometer.
- Fluxgate three component vector magnetometer.
- RMS Aeromagnetic Automatic Digital Compensator (AADC II).
- Diurnal monitoring magnetometer (Scintrex Envimag).

Radiometric Data Acquisition Equipment

- Exploranium GR-820 gamma ray spectrometer.
- Exploranium gamma ray detectors.
- Barometric altimeter (height and pressure measurements).
- Temperature and humidity sensor.

3.1 Survey Aircraft

The aircraft used for this survey was a Cessna 210 fixed wing survey aircraft, operated by UTS Geophysics, registration VH-TKQ. The specifications for these aircraft are as follows:

Power Plant

- Engine Type Continental, IO-520
- Brake Horse Power 285 bhp
- Fuel Type AV-GAS

Performance

- Cruise speed 150 Kn
- Survey speed 130 Kn
- Stall speed 60 Kn
- Range 1185 Km
- Endurance (no reserves) 5.2 hours
- Fuel tank capacity 246 litres

3.2 Data Positioning and Flight Navigation

Survey data positioning and flight line navigation was derived using real-time differential GPS (Global Positioning System).

Navigation was provided through a UTS designed and built electronic pilot navigation system providing computer controlled digital navigation instrumentation mounted in the cockpit as well as an externally mounted track guidance system.

GPS derived positions were used to provide both aircraft navigation and survey data location information.

The GPS systems used for the survey were:

•	Aircraft GPS Model	Novatel 39xx series
•	Sample rate	0.5 Seconds (2 Hz)
•	GPS satellite tracking channels	12 parallel
•	Typical differentially corrected accuracy	1-2 metres (horizontal) 3-5 metres (vertical)

3.3 UTS Data Acquisition System and Digital Recording

All geophysical sensor data and positional information measured during the survey were recorded using a UTS developed, high speed, precision data acquisition system. Survey data was downloaded on completion of each survey flight.

Instrument synchronisation times were measured and removed in real-time by the UTS data acquisition system.

3.4 Altitude Readings

Accurate survey heights above the terrain were measured using a King radar altimeter installed in the aircraft. The height of each survey data point was measured by the radar altimeter and stored by the UTS data acquisition system.

•	Radar altimeter models	King KRA-10
•	Accuracy	0.3 metres
•	Resolution	0.1 metres
•	Range	0 - 500 metres
•	Sample rate	0.1 Seconds (10Hz)

The digital terrain model is calculated by subtracting the terrain clearance (radar altimeter) from the GPS height (interpolated to 0.1 Hz), and as such the accuracy is constrained by the differentially corrected GPS position. The GPS height is acquired relative to the WGS84 datum height and so n-value separations are applied to the final digital terrain model to create a digital elevation model relative to the Australian Height Datum (AHD).

3.5 UTS Stinger Mounted Magnetometer System

The installation platform used for the acquisition of magnetic data was a tail mounted stinger. This proprietory stinger system was constructed of carbon fibre and designed for maximum rigidity and stability.

Both the total field magnetometer and three component vector magnetometer were located within the tail stinger.

3.6 Total Field Magnetometer

Total field magnetic data readings for the survey were made using a Scintrex Cesium Vapour CS-2 Magnetometer. This precision sensor has the following specifications:

- Model Scintrex Cesium Vapour CS-2 Magnetometer
- Sample Rate 0.1 seconds (10Hz)
- Resolution 0.001nT
- Operating Range 15,000nT to 100,000nT
- Temperature Range -20° C to $+50^{\circ}$ C

3.7 Three Component Vector Magnetometer

Three component vector magnetic data readings for the survey were made using a Develco Fluxgate Magnetometer. This precision sensor has the following specifications:

•	Model	Develco Fluxgate Magnetometer
•	Sample Rate	0.1 seconds (10Hz)
•	Resolution	0.1nT
•	Operating Range	-100,000nT to 100,000nT
•	Temperature Range	-20° C to $+50^{\circ}$ C

3.8 Aircraft Magnetic Compensation

At the start of the survey, the system was calibrated for reduction of magnetic heading error. The heading and manoeuvre effects of the aircraft on the magnetic data were removed using an RMS Automatic Airborne Digital Compensator (AADC II).

Calibration of the aircraft heading effects were measured by flying a series of pitch, roll and yaw manoeuvres at high altitude while monitoring changes in the three axis magnetometer and the effect on total field readings. A 26 term polynomial model of the aircraft magnetic noise covering permanent, induced and eddy current fields was determined. These coefficients were then applied to the data collected during the survey in real-time. The coefficients are listed in Appendix F.

The compensation flight data was recorded and then checked to ensure the acquisition of the compensation solution was without artifacts. A testbox flight was then recorded repeating the series of pitch, roll and yaw manaeuvres on all cardinal headings as with the compensation flight but now using the approved solution stored in the AADC II. This testbox flight data was then processed to test the validity of the compensation for all cardinal headings, north, south, east and west.

UTS static compensation techniques were also employed to reduce the initial magnetic effects of the aircraft upon the survey data.

3.9 Diurnal Monitoring Magnetometer

A base station magnetometer was located in a low gradient area beyond the region of influence of any man made interference to monitor diurnal variations during the survey.

The specifications for the magnetometers used are as follows:

- Model Scintrex Envimag
- Resolution 0.1 nT
 - Sample interval 2 seconds (0.5 Hz)
- Operating range 20,000nT to 90,000nT
- Temperature -20° C to $+50^{\circ}$ C

3.10 Barometric Altitude

An Air DB barometric altimeter was installed in the aircraft so as to record and monitor barometric height and pressure. The data was recorded at 0.10 second intervals and is used for the reduction of the radiometric data.

•	Model	Air DB barometric altimeter
•	Accuracy	2 metres
•	Height resolution	0.1 metres
•	Height range	0 - 3500 metres
•	Maximum operating pressure:	1,300 mb
•	Pressure resolution:	0.01 mb
•	Sample rate	10 Hz

3.11 Temperature and Humidity

Temperature and humidity measurements were made during the survey at a sample rate of 10Hz. Ambient temperature was measured with a resolution of 0.1 degree Celsius and ambient humidity to a resolution of 0.1 percent.

3.12 Radiometric Data Acquisition

The gamma ray spectrometer used for the survey was capable of recording 256 channels and was self stabilising in order to minimise spectral drift. The detectors used contain thallium activated sodium iodide crystals.

Thorium source measurements were made each survey day to monitor system resolution and sensitivity. A calibration line was also flown at the start and end of each survey day to monitor ground moisture levels and system performance. The background and height corrected thorium channel from the test lines, along with the source measurement results are presented in Appendix E.

- Spectrometer model Exploranium GR820
- Detector volume 32 litres
- Sample rate 1 Hz

The following table lists the spectral windows used.

Window Name	Total Count	Κ	U	Th
Energy Range (MeV)	0.4-2.81	1.370-1.570	1.660-1.860	2.410-2.810

4 PERSONNEL

4.1 Field Operations

UTS Geophysics operators and data processors

UTS Geophysics Survey Pilots

Will Bennett Peter Spencer

Rohan Williams John Alders Paul Sharpe Kevin Patchett

4.2 Project Management

Geoscience Australia

UTS Geophysics Perth Office

Murray Richardson

Nino Tufilli David Abbott Barrett Cameron Rebecca Steadman

5 SURVEY PARAMETERS

The survey data acquisition specifications for each area flown are specified in the following table:

AREA No.	PROJECT NAME	LINE SPACING	LINE DIRECTION	TIE LINE SPACING	TIE LINE DIRECTION	SENSOR HEIGHT	TOTAL LINE KM
01	Flinders Island	200m	090-270	2000m	000-180	90m	18,635
TOTAL							18,635

The total number of line kilometres of survey data collected over the survey area specified in the above table was 18,635.

The specified sensor height for the magnetic samples is as stated in the above table. This sensor height may be varied where topographic relief or laws pertaining to built up areas do not allow this altitude to be maintained, or where the safety of the aircraft and equipment is endangered.

The coordinate boundaries for the survey areas flown are detailed in Appendix C.

6 SURVEY LOGISTICS

The base locations used for operating the aircraft and performing in-field quality control and data processing of the survey data was Flinders Island, Tasmania. The flight logs are summarised in Appendix G.

6.1 Diurnal Magnetometer Locations

The following table contains the approximate locations where the diurnal base station magnetometers were located for the survey duration.

Period	LATITUDE	LONGITUDE	Location
09/01/07 - 27/03/07	-40.090775 degrees	148.004741 degrees	Whitemark Airport

7 DATA PROCESSING PROCEDURES

7.1 Data Pre-processing

At the commencement of each acquisition flight, all the instrumentation clocks were synchronized to local time, and the error and latency of each instrument in providing its data measurement calculated. The results of these latency measurements were recorded into a synchronisation file, and the results used to assign GPS positions to the magnetic, radiometric and elevation data. As a result of the physical separation of the sensors, a small residual offset still exists between instrument timings.

The raw survey data was downloaded from the aircraft after each flight and transferred to the field computer where it was then trimmed to the correct survey boundary extents. Any survey lines subsequently reflown were removed from the raw field dataset.

To compensate for this residual parallax error, an adjustment was made to the instrument clocks. The magnetic and radar altimeter data was adjusted by 0.600 seconds, and the radiometric data was adjusted by 1.375 seconds for each flight.

The synchronized, parallax corrected data was then exported as located ASCII data and loaded into field data bases for further quality control procedures.

7.2 Magnetic Data Processing

The diurnal data was filtered with a 13 point moving average filter to reduce noise levels, followed by second difference filter was to identify and remove spikes of less than 0.25 nT.

The filtered diurnal measurements were subtracted from the diurnal base field and the residual corrections applied to the survey data by synchronising the diurnal data time and the aircraft survey time. The average diurnal base station value was added to the survey data.

An eighth difference filter was run on the raw magnetic survey data in order to identify any remaining spikes in the data, which were manually edited from the data.

The X and Y positioning of the data was then checked for spikes before applying the IGRF correction. Any spikes in the positions were manually edited. The updated IGRF 2005 correction was calculated at each data point (taking into account the height above sea level).

This regional magnetic gradient was subtracted from the survey data points.

An assessment of the data at this point showed that no major levelling problems existed in the residual magnetic data.

Survey tie line leveling was then applied to improve the DC component of the magnetic data. A single micro-levelling pass was then applied to the data to correct any minor level errors due to variations in terrain clearance or other factors. This micro-levelling process was only used in selective areas targeting wavelengths of 2 x line spacing interval (in this case, 400m) using a proprietary method.

For a given target wavelength a reference grid is constructed and then filtered by two dimensional operators. A file of levelling corrections is generated from comparing the survey line data and the reference grid for each target wavelength and then subjected to statistical analysis. Limits are established for the leveling corrections based on these statistics, and the levelling corrections restricted to these limits. The microlevelling corrections are then applied to the survey line data and the resulting line data is interrogated. Limits of \pm 50 nT were used for the levelling corrections to selected areas.

Located and gridded data were generated from the final processed magnetic data.

7.3 Radiometric Data Processing

Statistical noise reduction of the 256 channel data was performed using the Noise Adjusted Singular Variable Decomposition (NASVD) method described by Hovgaard and Grasty (1997).

The full spectrum radiometric data was masked to the Flinders Island coastal boundary before noise reduction. A noise-adjusted singular value decomposition is performed, and the number of components to be used is determined by inspection of plots of the spectral components and by a statistical analysis of the contributions of the components. If the spectral shapes show any unusual characteristics, further analysis of the concentrations of the spectral components in the line data is performed in order to identify and eliminate any corrupt spectra. If such spectra were eliminated, the NASVD process is re-performed, in order to obtain spectral components free of any bias from corrupt spectra.

Only the dominant spectral shapes (identified as described above) were used in the spectral reconstruction process. The first 6 NASVD components were used for this process.

Channels 30-250 only are spectrally smoothed, as these contain the regions of interest and are not dominated by the lower end of the Compton continuum. The energy spectrum between the potassium and thorium peaks was recalibrated from the spectrally smoothed 256 channel measurements.

The aircraft background spectrum and the scaled unit cosmic spectrum were then subtracted from the 256 channel data. This 256 channel data was then windowed to the 5 primary channels of total count, potassium, uranium, thorium and low-energy uranium. Dead time corrections were then applied to the data. Radon background removal was performed using the Minty Spectral Ratio method (1992).

The radar altimeter data was corrected to standard temperature and pressure, and height corrected spectral stripping was then applied to the windowed data. Height attenuation corrections based on the STP radar altimeter were then performed to remove any altitude variation effects from the data.

The Uranium and Total Count channels were tie-levelled to remove the effects of residual radon background. The tie-levelling process employed was a least-squares/median filter procedure, which generated a single correction for each line of data. Mis-matches were calculated at each tie-traverse intersection and the median mismatch for each flight line was calculated as the residual levelling error for that line.

Final micro-levelling techniques were then selectively applied to the tie line levelled data to remove minor residual variations in profile intensities, as per the method outlined for magnetic data micro-levelling in 7.2 above. Limits were applied to the radiometric channels in selected areas only during the micro-levelling process are shown in the table below.

CHANNEL	TOTAL COUNT	POTASSIUM	URANIUM	THORIUM
Micro-levelling	300	20	10	10
Correction limit				
(+/- cps)				

The corrected count rate data was then converted to ground concentrations for potassium, uranium and thorium (sensitivity coefficients are supplied in Appendix F).

Located and gridded data were generated from the final processed radiometric data and final grids were masked to the Flinders Island coastal data.

References

Hovgaard, J., and Grasty, R.L., 1997. Reducing statistical noise in airborne gamma-ray data through spectral component analysis. In *"Proceedings of Exploration 97: Fourth Decennial Conference on Mineral Exploration" edited by A.G.Gubins*, 1997, 753-764.

Minty, B. R. S., 1992 - Airborne gamma-ray spectrometric background estimation using full spectrum analysis. *Geophysics*, **57**, 279-287.

7.4 Digital Elevation Model Data Processing

The raw radar altimeter data was checked for spikes, and any found were manually edited. The GPS altimeter data was checked for spikes and steps, and any found were manually edited.

The radar altimeter data was then subtracted from the GPS altimeter data. The separation distance between the GPS antenna and the radar altimeter of 1.4 metres was subtracted from the digital terrain data.

The digital terrain data thus derived was tie line levelled and gridded. The tielevelling process employed was a least-squares/median filter procedure, which generated a single correction for each line of data. Mis-matches were calculated at each tie-traverse intersection and the median mismatch for each flight line was calculated as the residual levelling error for that line. The tie-levelled data was then examined and subjected to a 2-pass microlevelling procedure targetting wavelengths of 800m and 400m, with correction limits of 20.0m and 8.0m respectively, to produce the final digital terrain model data channel. The final digital terrain model grid displayed no line dependent artifacts.

The GPS Height acquired by the acquisition system is relative to the WGS84 height datum. N-value separation corrections need to be applied to correct the WGS84 digital terrain model so that it is level to the Australian Height Datum (AHD).

Grid based N value corrections were calculated and checked for artifacts then applied to the digital terrain model data, producing the digital elevation model. This elevation model was compared to the 9 second digital elevation data downloaded from the Geoscience Australia website.

A residual datum shift offset was then calculated and then applied to create the final DEM grid and located data. The histogram image below is representative of this residual datum shift offset between the N-Value leveled AHD DEM and the 9 second DEM. The offset was calculated to be less than a metre in height.

🖻 24 Bit Ima	ging Window 1			X
 ✓ Pseudo Sun Red Green Blue 		M.ers	Look PSEUD C Lin His C Ga Default 25	up Table OCO ear togram ussian ues from File Saturation 5 Cancel Accept
-41.63768		59.784	23	

The following table contains spot height checks between the final processed digital elevation model data and the 9 second DEM.

EASTING	NORTHING	A827 DEM	9 SEC DEM
587180.64E	5585246.28N	10.37m	12.59m
585852.43E	5594576.27N	-1.74m	1.05m
594553.44E	5579442.19N	4.46m	5.95m
607395.62E	5569824.78N	-0.63m	2.52m
610057.30E	5552002.76N	0.32m	0.89m

A final Digital Elevation Model grid was then masked to the Flinders Island coastal data.

For further information concerning the survey flown, please contact the following office:

Head Office Address:

UTS Geophysics Fauntleroy Avenue, Perth Airport REDCLIFFE WA 6104

Tel: +61 8 9479 4232 Fax: +61 8 9479 7361

Postal Address:

UTS Geophysics P.O. Box 126 BELMONT WA 6984

Quoting reference number: A827

APPENDIX A - LOCATED DATA FORMATS

FINAL MAGNETIC LOCATED DATA

FIELD	FORMAT	DESCRIPTION	UNITS
1	I5	PROJECT NUMBER	
2	I4	FLIGHT/AREA NUMBER	AAFF (Area/Flight)
3	18	LINE NUMBER	
4	18	FIDUCIAL NUMBER	
5	19	DATE	YYYYMMDD
6	F6.1	BEARING	degrees
7	F12.6	LONGITUDE (GDA94)	degrees
8	F11.6	LATITUDE (GDA94)	degrees
9	F11.2	EASTING (MGA94)	metres
10	F11.2	NORTHING (MGA94)	metres
11	F8.2	RADAR ALTIMETER HEIGHT	metres
12	F10.3	TIE LEVELLED TMI	nT
13	F10.3	MICRO LEVELLED TMI	nT

FINAL DIGITAL ELEVATION MODEL LOCATED DATA

FIELD	FORMAT	DESCRIPTION	UNITS
1 2	 I5 т4	PROJECT NUMBER FLIGHT/AREA NUMBER	AAFF (Area/Flight)
3 4	I8 18	LINE NUMBERDATE FIDUCTAL NUMBER	indi (inca) i rigite,
5	19	DATE	YYYYMMDD
6	F6.1	BEARING	degrees
7	F12.6	LONGITUDE (GDA94)	degrees
8	F11.6	LATITUDE (GDA94)	degrees
9	F11.2	EASTING (MGA94)	metres
10	F11.2	NORTHING (MGA94)	metres
11	F8.2	RADAR ALTIMETER HEIGHT	metres
12	F8.2	DIGITAL ELEVATION MODEL (WGS84)	metres
13 	F8.2	DIGITAL ELEVATION MODEL (AHD)	metres

FINAL RADIOMETRIC LOCATED DATA

FIELD	FORMAT	DESCRIPTION	UNITS
1	 I5	PROJECT NUMBER	
2	I4	FLIGHT/AREA NUMBER	AAFF (Area/Flight)
3	18	LINE NUMBERDATE	
4	I8	FIDUCIAL NUMBER	
5	I9	DATE	YYYYMMDD
6	F6.1	BEARING	degrees
7	F12.6	LONGITUDE (GDA94)	degrees
8	F11.6	LATITUDE (GDA94)	degrees
9	F11.2	EASTING (MGA94)	metres
10	F11.2	NORTHING (MGA94)	metres
11	F8.2	RADAR ALTIMETER HEIGHT	metres
12	F7.1	BAROMETRIC PRESSURE	hPa
13	F6.1	TEMPERATURE	degrees C
14	F10.4	DOSE RATE	nG/H
15	F9.4	POTASSIUM CONCENTRATION	20
16	F9.4	URANIUM CONCENTRATION	ppm
17	F9.4	THORIUM CONCENTRATION	ppm

RAW MAGNETIC LOCATED DATA

FIELD	FORMAT	DESCRIPTION	UNITS
1	 I5	PROJECT NUMBER	
2	I4	FLIGHT/AREA NUMBER	AAFF (Area/Flight)
3	I8	LINE NUMBER	
4	F11.1	FIDUCIAL NUMBER	
5	I9	DATE	YYYYMMDD
б	F6.1	BEARING	degrees
7	F12.6	LONGITUDE (GDA94)	degrees
8	F11.6	LATITUDE (GDA94)	degrees
9	F11.2	EASTING (MGA94)	metres
10	F11.2	NORTHING (MGA94)	metres
11	F8.2	RADAR ALTIMETER HEIGHT	metres
12	F10.2	FLUXGATE_X	nT
13	F10.2	FLUXGATE_Y	nT
14	F10.2	FLUXGATE_Z	nT
15	F10.2	UNCOMPENSATED MAG	nT
16	F10.2	COMPENSATED MAG	nT
17	F10.2	DIURNAL MAG	nT

RAW DIGITAL TERRAIN MODEL LOCATED DATA

FIELD	FORMAT	DESCRIPTION	UNITS
1	 I5	PROJECT NUMBER	
2	I4	FLIGHT/AREA NUMBER	AAFF (Area/Flight)
3	18	LINE NUMBERDATE	
4	F11.1	FIDUCIAL NUMBER	
5	19	DATE	YYYYMMDD
6	F6.1	BEARING	degrees
7	F12.6	LONGITUDE (GDA94)	degrees
8	F11.6	LATITUDE (GDA94)	degrees
9	F11.2	EASTING (MGA94)	metres
10	F11.2	NORTHING (MGA94)	metres
11	F8.2	RADAR ALTIMETER HEIGHT	metres
12	F10.1	GPS TIME	seconds
13	F8.2	GPS HEIGHT (WGS84)	metres

RAW RADIOMETRIC LOCATED DATA

FIELD	FORMAT	DESCRIPTION	UNITS
1	I5	PROJECT NUMBER	
2	I4	FLIGHT/AREA NUMBER	AAFF (Area/Flight)
3	I8	LINE NUMBERDATE	
4	F11.1	FIDUCIAL NUMBER	
5	I9	DATE	YYYYMMDD
6	F6.1	BEARING	degrees
7	F12.6	LONGITUDE (GDA94)	degrees
8	F11.6	LATITUDE (GDA94)	degrees
9	F11.2	EASTING (MGA94)	metres
10	F11.2	NORTHING (MGA94)	metres
11	F8.2	RADAR ALTIMETER HEIGHT	metres
12	F7.1	BAROMETRIC PRESSURE	hPa
13	F6.1	TEMPERATURE	degrees C
14	I7	RAW TOTAL COUNT	counts/sec
15	15	RAW POTASSIUM COUNT	counts/sec
16	15	RAW URANIUM COUNT	counts/sec
17	I5	RAW THORIUM COUNT	counts/sec
18	I5	COSMIC	counts/sec
19	I7	UPWARD RAW TOTAL COUNT	counts/sec
20	I5	UPWARD RAW POTASSIUM COUNT	counts/sec
21	I5	UPWARD RAW URANIUM COUNT	counts/sec
22	I5	UPWARD RAW THORIUM COUNT	counts/sec
23	I5	UPWARD COSMIC	counts/sec
24	F11.1	SPEC FID	
25	I7	SAMPLE TIME	milliseconds
26	I4	ENERGY LOW	
27	I4	ENERGY HIGH	
28	I7	LIVE TIME	
29	F5.1	CRYSTAL RESOLUTION	
30	256I5 	RAW RADIOMETRIC CHANNELS	counts/sec

GRIDDED DATASET FORMATS

Gridding was performed using a bicubic spline algorithm.

The following grid formats have been provided:

• ER-Mapper format

LINE NUMBER FORMATS

Line numbers are identified with a six digit composite line number and have the following format - ALLLLB, where:

A	Survey area number
LLLL	Survey line number
	0001-8999 reserved for traverse lines
	9001-9999 reserved for tie lines
В	Line attempt number, 0 is attempt 1, 1 is attempt 2 etc

UTS FILE NAMING FORMATS

Located and gridded data provided by UTS Geophysics uses the following 8 character file naming convention to be compatible with PC DOS based systems.

File names have the following general format - JJJJAABB.EEE, where:

- JJJJ UTS Job number
- AA Area number if the survey is broken into blocks
- BB M Magnetic data
 - R Radiometric data
 - TC Total count data
 - K Potassium counts
 - U Uranium counts
 - Th Thorium counts
 - DT Digital terrain data
- EEE File name extension
 - LDT Located digital data file
 - FMT Located data format definition file
 - ERS Ermapper gridded data header file
 - Ermapper data portion has no extension
 - GRD Geosoft gridded data file

APPENDIX B - COORDINATE SYSTEM DETAILS

Locations for the survey data are provided in both geographical latitude and longitude and Universal Transverse Mercator metric projection coordinate systems.

World Geodetic System 1984
Geographical
6378137m
1/298.257223563

MGA94 Coordinate type Geodetic datum Semi major axis Flattening Map Grid of Australia 1994 Universal Transverse Mercator Projection Grid Geocentric Datum of Australia 6378137m 1/298.257222101

APPENDIX C - SURVEY BOUNDARY DETAILS

COORDINATES REPORT

Job ID code: A8270101	
Client: Geoscience Australia	
Job: Flinders Island	
Coordinates MGA94 Zone 55	
Include Point: 0.0	0.00

Surround	
598000.000	5501400.000
581600.000	5523200.000
581600.000	5535800.000
590000.000	5535800.000
559800.000	5585800.000
571900.000	5596000.000
568500.000	5600100.000
582000.000	5605500.000
602200.000	5579000.000
611600.000	5579000.000
615200.000	5545600.000
614600.000	5545600.000
629800.000	5522400.000

Flinders Island Project

APPENDIX E – RADIOMETRIC CALIBRATION RESULTS

The map below shows the survey boundary and the location of the radiometric testline.

The chart below shows the average thorium value for each test line flown. Testline Thorium Statistics

The chart below shoes the results of the daily thorium source tests for each day.

The survey base location was maintained throughout the survey and so only one test line location was required and only one daily thorium button source checks site.

Daily Thorium Source Checks

APPENDIX F – ACQUISITION AND PROCESSING PARAMETERS

Magnetic Data RMS AADC Coefficients

Solution Date: 09/01/2007	Solution Altitude: 8500 ft AGL
Standard Deviation Total Field Unco	mpensated 3.565×10^{-1}
Standard Deviation Total Field Comp	Densated 4.006×10^{-2}
Improvement Ratio	8.9
Norm	53.3

Magnetic Processing Parameters

IGRF date	-	2007.25
IGRF mean value	-	60888.66 nT
Magnetic inclination	-	-70.3 deg
Magnetic declination	-	13.9 deg
Diurnal base value	-	60814.00 nT

Radiometric Data

Height Attenuation Coefficients

Total Count:	-0.0074000
Potassium:	-0.0094000
Uranium:	-0.0084000
Thorium:	-0.0074000

Cosmic Correction Coefficients

Total Count:	1.615
Potassium:	0.092
Uranium:	0.087
Thorium:	0.051

Aircraft Background Coefficients

Total Count:	33.69
Potassium:	9.27
Uranium:	0.59
Thorium:	0.05

Sensitivity Coefficients

28.0 cps/dose rate
104.8 cps/%k
13.3 cps/ppm
5.9 cps/ppm

Final Reduction - All data reduced to STP height datum 90m

APPENDIX G – SURVEY FLIGHT LOGS

The following table summarises the flight logs for A827 - Flinders Islands Project.

Flight #	Date	Dist Km
101	70109	377.901
102	70109	800.655
103	70110	847.712
104	70110	371.023
105	70111	187.332
106	70111	175.262
107	70112	901.415
108	70113	459.311
109	70113	941.096
110	70114	892.745
111	70115	619.477
112	70115	597.056
113	70116	806.641
114	70116	578.918
115	70117	803.194
116	70117	711.727
117	70119	611.429
118	70120	40.275
119	70307	467.477
120	70310	755.154
121	70310	821.698
122	70312	184.554
123	70314	667.859
124	70322	521.566
125	70322	355.421
126	70325	792.562
127	70325	845.962
128	70326	764.2
192	70111	60.079
193	70111	669.738
194	70312	47.661
195	70322	282.56
196	70327	467.656
	TOTAL	18427.3
	=	2