

000

GRADIENT AND SCHLUMBERGER ARRAY ELECTRICAL INDUCED POLARIZATION SURVEYS OVER THE LITTLE OWEN (DORA-HUXLEY) GRID ON BEHALF OF

THE MOUNT LYELL MINING AND RAILWAY COMPANY LTD.

جير سرب ران ران ر	A.0.	C.G.	E.0.	
	<u> </u>			Register
C, DIR.	2	00T	1984	EEIL
	DEP	T. OF N	HNES]
	5. (D	076	184	- 100 5074

PRIVATE AND CONFIDENTIAL

REPORT ON

GRADIENT AND SCHLUMBERGER ARRAY ELECTRICAL INDUCED POLARIZATION SURVEYS OVER THE LITTLE OWEN (DORA-HUXLEY) GRID ON BEHALF OF

THE MOUNT LYELL MINING AND RAILWAY COMPANY LTD.

BY

A.W. HOWLAND-ROSE MSc,DIC,AMAusIMM,FGS. GEOPHYSICIST

SYDNEY, N.S.W.

NOVEMBER, 1973 -MARCH, 1974

TAS-018A

CONTENTS

Su	mm	ar	v	
Su	anan	aı	v	

205

Introduction	Page	1
The Methods	Page	2
Discussion of Results	Page	7
Contour Interpretations	Page	9
Line by Line Description	Page	12
Conclusions	Page	32
Recommendations	Page	34

Appendix 'IP'

Appendix 'IPR-8'

Plate 1 - Data Profiles
Plate 2 - Chargeability Contour Plan
Plate 3 - Resistivity Contour Plan
Plate 4 - Magnetic Contour Plan

SCINTREX PTY. LTD. Formerly SECIGEL ASSOCIATES AUSTRALASIA PTY. LTD. GEOPHYSICAL CONSULTANTS AND CONTRACTORS

SUMMARY

Gradient array Electrical Induced Polarization surveys over the Little Owen grid have revealed a number of zones whose geophysical characteristics are similar to, or a variant of, that expected or delineated over known orebodies.

In areas of high electrical noise caused by the operation of DC trams within the mine, a moving Schlumberger array was employed. Within the limitations imposed by the array, excellent data was recorded.

As assessed from the three geophysical characteristics of magnetic response, apparent resistivity and apparent chargeability, a priority of interest for follow-up has been suggested.

A REPORT ON

GRADIENT AND SCHLUMBERGER ARRAY ELECTRICAL INDUCED POLARIZATION SURVEYS OVER THE LITTLE OWEN (DORA-HUXLEY) GRID

ON BEHALF OF

THE MOUNT LYELL MINING AND RAILWAY COMPANY LTD.

INTRODUCTION

At the request of Mr. K. Reid, Chief Geologist, Scintrex Pty. Ltd. carried out induced polarization surveys over the Little Owen (Dora-Huxley) grid in the Queenstown area, west coast Tasmania. on behalf of the Mount Lyell Mining and Railway Company Ltd.

The work was carried out in several phases, between 2nd November and 6th December, 1973 and on the 3rd, 18th, 19th and 20th of March, 1974. In all, some $9\frac{1}{2}$ single operator days and 163/4 double operator days were taken to cover the 17 line miles.

The survey party was under the immediate direction of Mr. B. Ekstrom with additional Scintrex operators as required. Technical supervision was undertaken by A.W. Howland-Rose and geological supervision by Mr. K. Wells, Senior Exploration Geologist for the Mount Lyell Mining and Railway Company Ltd.

Page - two

The majority of the survey was carried out using a gradient array, but a portion of the grid required a special moving Schlumberger array. For the most part an IPR-7 was used but an IPR-8 was employed in the Schlumberger survey.

The objective of the survey was to carry out a rapid reconnaissance survey over the grid area which includes areas of extreme terrain. Thus steep slopes will be expected to materially influence the results in certain areas. The method adopted is capable of mapping the substantial pyritic haloes surrounding the Mt. Lyell type mineralisation, and in addition, electrically continuous Cape Horn type mineralisation.

The magnetic field measurements were made using a Geometrics total field proton precession unit and were carried out by Mt. Lyell Mining and Railway Company Ltd. Such first order adjustments as were required to display the data in meaningful form were carried out by Scintrex Pty. Ltd.

The induced polarization method is briefly described in Appendix 'IP' and the IPR-8 in Appendix 'IPR-8'.

THE METHODS

 $\hat{\Sigma}$

The methods employed on the Little Owen grid have been discussed in reports TAS-016 and TAS-018D. However, for

Page - three

completeness, these arguments are repeated below together with additional relevant remarks.

The Mount Lyell chalcopyrite orebodies occur within pyrite To test the magnetic susceptibility and conductivity haloes. of the mineralisation, Scintrex Pty. Ltd. carried out tests on diamond drill core from the Selina and Cape Horn areas. The former is an exploration area and the latter an economic deposit in which the grounded loop Turam method played a part in the discovery of the orebody. The object of these surveys was to establish the geophysical characteristics of the mineralisation in order to devise an efficient geophysical approach to the location of favourable zones in the Mt. Read area. The results of these surveys are described in a report entitled "Conductivity, Susceptibility, Chargeability and Resistivity Tests of Diamond Drill Core on behalf of the Mount Lyell Mining and Railway Company Ltd." by A.W. Howland-Rose (TAS-004) and dated November, 1972.

The Cape Horn orebody was observed to have a weakly conductive halo of 0.10 to 0.30 mhos/metre (3 - 10 ohm-metres). It showed that the extensive pyrite developed to higher concentrations of 5% to 20% does not produce significant conductivity, but all significant electromagnetic conductors

Page - four

contained significant copper mineralisation, the latter acting as an electronic conductor between pyrite grains. However, not all significant chalcopyrite mineralisation proved to be conductive.

Consideration of the results of previous geophysical surveys in the Mt. Lyell area together with the results of the core tests, and bearing in mind the terrain in the survey area, it was decided that the best cost effective reconnaissance geophysical work would consist of large current dipole gradient array survey over the entire area of interest. This together with a proton precession magnetometer survey was expected to yield the following information.

- 1 The resistivity, chargeability and magnetic data would, by displaying the various geophysical characteristics of the underlying rocks, materially aid the geological delineation of these rock types in this glacial moraine covered area.
- 2 The chargeability data would be expected to define areas of pyritisation within the survey area.
- 3 The near surface, relatively narrow, vein type sulphide deposits would be displayed by the induced polarization

Page - five

data, and where conductive, by the resistivity data.

For the most part, the gradient array method appears to work as expected, however, as the mining areas were approached, high noise levels arose from the operation of the DC trams. Thus the eastern portion of the following lines were surveyed using a moving Schlumberger array: 9200N, 9800N and 10400N.

The problem first became evident at Lake Margaret but here a convenient shutdown period enabled the gradient to be efficiently run, however, at Computering this was not possible. Therefore a different method of obtaining neaningful data had to be found. As would be expected, both dipole-dipole and pole-dipole work demonstrated, as did gradient array. that the noise levels were too great for meaningful data to be obtained in an economic fashion. This problem was resolved by the use of a "moving Schlumberger array". This system, due to the short 500 feet current dipole and the internal potential dipole, utilises higher effective current concentrations in the vicinity of the induced polarization measurement. In practice this is some 100 fold greater than for a 10,000 feet gradient array, 40 fold greater than a 2000 feet gradient array, and some 5 to 10 times greater than for the normal moving source arrays of equivalent depth penetration. The practical application of this array gave no noise problems whatsoever.

<u>Page – six</u>

The practical limitations of the array are (i) that its maximum depth penetration is limited to just in excess of 100 metres. (ii) the current electrodes must be moved along line, and (iii) the passage of each current electrode over an anomalous concentration of chargeable material will also yield an anomalous response, but of smaller dimensions to the main response, which will be contained between the 100 feet potential dipole in the centre of the 500 feet current dipole. A to scale diagram of the array employed is shown on Plate 1 of Report TAS-018D, and a typical response from a narrow body is seen on line 22W where the source lies immediately below 12.5S, and the subsidiary anomalies at 9.5S and 15.5S are due to responses when the current dipoles are in close proximity to the source. The width of this zone is some 50 to 80 feet, and in these circumstances the "triple" response is easy to identify. However, in wide zones such as that observed between 8S and 11S on line 39W, the picture is somewhat more complex.

With respect to the gradient surveys, it was anticipated that any areas of pyritisation defined in the surveys may be subject to additional geophysical surveys, as well as careful geological examination and, where feasible, geochemical surveys.

Further narrow, conductive chargeable responses considered

Page - seven

characteristic of the Cape Horn type deposits should receive especially careful ground follow-up.

DISCUSSION OF RESULTS

The data profiles for both the gradient and moving Schlumberger arrays are presented on Sheets 1 and 2 of Plate 1 at the horizontal scale of 1 inch = 200 feet with the chargeability displayed at the scale of 1 inch = 10 milliseconds for the IPR-7 and 1 inch = 10 millivolts/ volt for the IPR-8. The resistivity data was displayed on a two inch log cycle and expressed in ohm-metres, with the total field magnetic data shown on a scale of 1 inch = 250 gammas. The base levels for plotting were 0 milliseconds (millivolts/volt), 1000 ohm-metres and 62,500 gammas, respectively.

Plates 2, 3 and 4 respectively, display a contour interpretation of the chargeability, resistivity and magnetic data at a scale of 1 inch = 500 feet. Only the gradient data has been contoured in Plates 2 and 3 as the multiple response Schlumberger array data is not compatible. Each gradient block is contoured separately. Along strike, continuity between current dipole blocks was, as expected compatible however, "end on" current dipole blocks cannot be expected to produce identical values, as non-identical volumes of

Page - eight

material are sampled, especially as the current poles are approached. However, these results are entirely predictable.

The gradient array current dipoles employed to energise the grid area were as follows:

ħ.

Line	Electrodes	Dipole	Lines Surveyed
2000N	1250W and 3750E	5000'	800N, 1400N, 2000N,
			2600N, 3200N
2000N	1000E and 6000E	5000'	800N, 1400N, 2000N,
			2600N, 3200N
4400N	750W and 2250E	3000'	3800N, 4400N, 5000N
4400N	750E and 3750E	3000'	3800N, 4400N, 5000N
4400N	2250E and 5250E	3000'	4400N, 5000N
6200N	750W and 2250E	3000'	5600N, 6200N, 6800N
6200N	750E and 3750E	3000'	5600N, 6200N, 6800N
5600N	2250E and $5250E$	3000'	5600N, 6200N, 6800N
5600N	3750E and 6750E	3000'	5600N, 6200N, 6800N
8000N	750W and 2250E	3000'	7400N, 8000N, 8600N
8000N	750E and 3750E	3000'	7400N, 8000N, 8600N
8000N	2250E and 5250E	3000'	7400N, 8000N, 8600N
8000N	3750E and 6750E	3000'	7400N, 8000N, 8600N
8000N	5250E and 8250E	3000'	7400N, 8000N, 8600N
9800N	750W and 2250E	3000'	9200N, 9800N, 10400N
9800N	750E and 3750E	3000'	9200N, 9800N, 10400N
9800N	2250E and 5250E	3000'	9200N, 9800N, 10400N

The following gradient block was surveyed using an IPR-8 receiver reading in millivolts/volt rather than milliseconds. The relationship between these units is described in detail in Appendix 'IPR-8'. However, one millisecond is equivalent to about 1.5 millivolts/volt.

Line	Electrodes	Dipole	Lines Surveyed
6200N	6250E and 3750E	2500'	5600N, 6200N, 6800N

Those lines surveyed using a moving Schlumberger array having a current dipole of 500 feet and a potential dipole of 100 feet and using an IPR-8, are as follows:

LineCo-ordinates9200N2950E to 6850E9800N4450E to 6850E10400N4450E to 6650E

The Contour Interpretations

<u>Resistivity</u> - The observed resistivities ranged between 1000 ohm-metres to just under 15,000 ohm-metres, but 3000 - 4000 ohm-metres can be considered average.

The most resistive rock units recorded in the area were the Queenstown Pyroclastics in the western central and western southern part of the grid. An additional resistive

Page - ten

rock unit was the Andesite Intrusive, but only on the western ends of lines 4400N to 5600N inclusive.

The most conductive area surveyed was, as would be expected, no over the glacial moraine on the western extremities of lines glacial 7400N to 8600N. Other less resistive units included most sediments, and the north eastern quartz porphyry.-struge-gk purphyr lawas at indeal which and very and a very and very and a very and a very and a very and very and a very a

<u>Chargeability</u> - The recorded apparent chargeabilities ranged from less than 4 to greater than 25 milliseconds, however, the average background can be considered to be between 8 and 10 milliseconds.

<u>Magnetic Field</u> - The magnetic field showed a local variation rarely greater than 1000 gammas in the total field. The more magnetically active rock units included the Andesite Intrusives and the synclinal core of the Queenstown Pyroclastics. The zones of relatively undisturbed magnetic field occur over the areas mapped as agglomerates and sediments.

A general study of the three contour maps does not permit clear cut boundaries to be drawn between the various mapped rock units, only subtle differences can be seen.

Some notes on the interpretation are warranted. With the

Page - eleven

gradient array the source of the reading lies between the two equipotential surfaces tapped by the two potential pots employed. For the most part then, when working in the centre section of a gradient array, the source will be "immediately below" the potential dipole used. The reliability therefore of positional information with gradient array is excellent, however, the depth at which the response occurs is difficult to assess with accuracy. The maximum depth can be estimated from a consideration of the profile shape, but the accuracy of this approach will depend on a minimal current dipole length, and of course sharp boundaries to the body. The resolution therefore is not better than half to quarter of the dipole. Many of the maximum depths of 50 feet may in fact either outcrop or sub-outcrop. Some moving source array would be required to obtain an accurate depth estimate.

Similarly the width of bodies is not easy to determine for zones having a width less than half the dipole spacing used. Thus, estimated maximum widths are educated guesses at best for narrow zones. However, wider bodies can be resolved more accurately.

The <u>attitude</u> of a chargeable zone can only really be gauged with any precision in the centre of the gradient array, and of course where the body has a strongly contrasting chargeability

Page - twelve

and apparent resistivity to that of the enclosing rock units.

All field measurements were taken between slope distances along lines. This will, in steep areas, produce errors in the calculated apparent resistivity data. However, these errors will be arithmetic, and as significant changes in resistivity are logarithmic, this source of error is not significant. In assessing the position of the source in areas of extreme terrain, it does not lie vertically below the plotted position of the anomaly, but <u>normal to the</u> <u>"local slope"</u>. All positions in the text refer to source positions normal to the local slope.

Line by Line Description

<u>Line 800N</u> - Anomalies of about 5 to 6 milliseconds were located centred at 1750E and 2250E respectively. The former is certainly from a resistive source but the latter shows some weak conduction within the host. However, the absolute apparent resistivity of 2500 ohm-metres does not suggest a conductive source as such. The maximum width and depths are 80 feet and 80 feet and 50 feet respectively.

A 5 to 6 millisecond response between 3460E and 3600E from a relatively resistive source, is considered of minor significance only.

Page - thirteen

<u>Line 1400N</u> - A single point response at 1050E and a broad response between 1500E and 1750E of about 5 milliseconds above background are considered of minor interest only.

A 5 millisecond chargeability response at 3100E is coincident with very weak conduction within the source relative to the enclosing rocks, and a 150 gamma magnetic field distortion. The maximum width and depth are interpreted to be of the order of 50 feet. The source is considered to consist mainly of disseminated sulphides, with some magnetite present.

<u>Line 2000N</u> - Superimposed on a broad high of 8 milliseconds, a well defined peak of 6 milliseconds was recorded centred at 750E. There is no associated magnetic response and the resistivity profile shows only minimal depression in the vicinity of the anomaly. The source is interpreted to be disseminated sulphides at a maximum depth of 50 feet. This response may be assosicated with that seen between 550E and 800E on the previous line.

A broad 5 to 6 millisecond high between 1100E and 1700E may be related to that described on line 1400N between 1500E and 1750E. A broad zone of disseminated sulphides of the order of $\frac{1}{2}$ % - 1% by volume is suggested as the source for this response.

Page - fourteen

Small, 4 millisecond or so responses at 2650E and 3150E associated with minor depression in the resistivity profile lie within a magnetically anomalous zone. The source is put down to near surface segregations of sulphides and magnetite, the former, however, making up the majority of the IP response.

<u>Line 2600N</u> - Two broad zones of 7 to 8 milliseconds recorded on this line between about 450E and 1000E and between 1200E and 1400E were coincident with similar broad distortions in the magnetic field of 200 to 300 gammas. As there is no depression in the resistivity profile, the main source of the IP response is disseminated sulphides with magnetite making a minor contribution.

<u>Line 3200N</u> - The broad zone of induced polarization response referred to above correlates with a zone of similar characteristics seen on this line between 600E and 1400E. Again disseminated sulphides with some magnetite are the source.

A well defined response of 25 milliseconds above background was recorded centred at 310E. The asymmetry of the profile suggests a steep east dip. A complete absence of any depression in the apparent resistivity profile clearly shows disseminated or massive electrically discontinuous sulphides as the source. $2\frac{1}{2}\%$ sulphides across the 60 feet

<u>Page - fifteen</u>

width are the interpreted source. Although magnetite is present it only makes up a minor percentage of the causative material.

Between 2750E and 2850E a 5 to 6 millisecond response coincides with a minor depression in the resistivity profile. This anomaly is interpreted as coming from a zone of disseminated sulphides of $\frac{1}{2}$ % by volume.

Other responses on this line are considered of minor interest only.

<u>Line 3800N</u> - Between 650E and 1150E a broad chargeability response is associated with a broad low amplitude depression in the apparent resistivity profile. This is a northern extension of the broad zone of disseminated sulphides recorded on the two previous lines.

A small response at 1850E is interpreted to come from a disseminated source some 80 feet wide at a maximum depth of 50 feet below surface. The magnetic data suggests the occurrence of magnetite in close proximity to the sulphides.

A feature of the magnetic profile is a reverse anomaly between 1400E and 1650E coincident with a very highly resistive unit. The origin may be reversely magnetised magnetite within siliceous Tuffs. This feature assumes some prominence immediately to the north.

Line 4400N - A series of significant responses were recorded on this line, the first of which was recorded between 850E and 1000E, where a 10 millisecond anomaly coincident with a 70% depression in apparent resistivity was recorded. The source is interpreted as being a 150 feet wide source whose top lies within 50 feet of surface. The asymmetry of the profile infers a west dip. The source material is considered to be disseminated sulphides or electrically discontinuous sulphides of a percentage of 2% or so over the 150 feet width. A zone of prime interest.

A second zone of prime interest was recorded centred at 2050E. The 80 to 100 feet wide source has an interpreted west dip and is composed of essentially disseminated sulphides.

A broad zone of 8 to 10 milliseconds recorded between 2750E and 3100E is coincident with an 80% fall in the background resistivity and a 750 gamma magnetic response. The source material is interpreted to consist of disseminated sulphides with magnetite, but may also show more electrically continuous but narrow zones - for instance at 2800E. Again this is a zone of prime interest. The geological map shows that this zone lies just east of an Andesite Intrusive, and just

Page - seventeen

north of an area mapped as sediments. Pyritic and/or graphitic shales may also be a possible source.

A major change in resistivity form from over 6000 ohm-metres at 3650E to 800 ohm-metres at 3750E is accompanied by a distinct 5 millisecond anomaly <u>on the contact</u> between the two rock units which cause this remarkable change. The anomaly at 3700E has a maximum width of 40 feet, a maximum depth of 25 feet and the asymmetry of the profile form suggests an east dip. This anomaly occurs within an area where sediments have been recorded. However, the geophysical characteristics suggests a careful follow-up is warranted.

A major reversal in the magnetic field between 1000E and 1600E peaking at 1400E with a 1000 gamma response (relative to background) is coincident with a high resistivity unit between these co-ordinates. Reversely magnetised magnetite is the suggested source material. As there is no associated chargeable response, this is considered not to have any potential economic interest.

<u>Line 5000N</u> - This line contains few responses of significance. However, possible correlatives of those described above do occur and are as follows:

Page - eighteen

Feature	Line 4400N	<u>Line 5000N</u>
IP High	900E	700E
IP High	2050E	2150E
Broad IP Response	2750/3150E	2850/3250E

<u>Line 5600N</u> - A pronounced rise in chargeability from the local base level at 600E of 6 milliseconds to 18 milliseconds at 00 is accompanied by a sympathetic fall in the apparent resistivity from 6500 ohm-metres to 2000 ohm-metres. The magnetic field is significantly lower than to the east of this same zone. The possible source is a gradational change in rock type with an increase in the pyritic content within the pyroclastics mapped in the vicinity.

Between 1450E and 1975E somewhat higher IP background was noted. Between 1825E and 1975E the level is over twice background and is associated with a minor but distinct depression in the apparent resistivity profile to 2800 ohm-metres. The source material is probably disseminated sulphides with magnetite on the western flank.

A strong 8 millisecond anomaly at 2350E from a resistive source is interpreted to come from a source not deeper than 25 feet and dipping to the east.

A very similar response at 2750E occurs within an anomalously

Page - nineteen

high magnetic area which is interpreted to also come from a disseminated sulphide source having a width of about 80 feet, an eastern dip and a maximum depth of 50 feet.

A narrow anomaly at 3150E whose source has a width not greater than 25 to 30 feet and a maximum depth of not greater than 20 feet or so, is associated with a minor depression in the resistivity profile. However, if the mineralised zone is significantly narrower than can be resolved using the 100 feet potential used in this survey it would not necessarily show up clearly.

The most easterly anomaly located on this line using the IPR-7 was defined at 4550E, where a 6 millisecond anomaly from a resistive source is interpreted as originating from a disseminated sulphide source.

A further section of the line was surveyed using an IPR-8. With this instrument 1 millisecond is equal to approximately $1\frac{1}{2}$ millivolts/volt.

The only significant response recorded with the IPR-8 was located at about 5530E where a material 20 mv/V anomaly was observed within a slight depression in the resistivity background. The inferred dip is steeply to the east. The source is interpreted to be disseminated sulphides within a very weakly conductive host zone 80 feet in width at a

Page - twenty

maximum depth of not greater than 120 feet. An examination of decay form shows a very slight progressive increase in M_1 , M_3 and M_5 , inferring a normal grain size distribution near surface. This response is recommended for careful follow-up work.

<u>Line 6200N</u> - Between 1550E and 2350E and between 3150E and 4600E, higher than background chargeability was observed within a generally higher magnetic background. A formational origin is postulated to explain these variations.

Some three low amplitude anomalies at 200E, 4575E and 4820E are all interpreted as coming from essentially disseminated sulphide sources being within 50 to 70 feet of surface

A broad zone of high magnetic relief between 1600E and 3200E is clearly associated with an Intrusive Andesite mapped between these co-ordinates.

A further section of the line was surveyd using an IPR-8. With this instrument 1 millisecond is equal to approximately $1\frac{1}{2}$ millivolts/volt.

The general resistivity and chargeability profile form over this section does not show much similarity. At 4850E and 5130E, two chargeability anomalies of 7 to 8 millivolts/volt

Page - twenty one

were defined, each of which shows only minimal conduction. The maximum depths are 120 feet and 150 feet respectively, while the inferred widths of the sources are 80 feet and 100 feet respectively. The former occurs over a proposed fault, while the latter occurs south of mapped siltstones Both sources are essentially disseminated sulphides or graphite.

A broad zone of twice background chargeability was recorded between 5450E and 5750E. As the resistivity remains a high 2000 to 3000 ohm-metres, the source is disseminated sulphides or graphite. This anomaly is worthy of careful follow-up as it occurs within a prospective geological horizon, overlain by moraine.

West of 5950E the apparent resistivity and chargeability increase in sympathy to 6050E where the survey ends. As the area is mapped as Owen Conglomerates this anomaly is considered of minor interest only. It is certainly due to disseminated sulphides, which tends to be confirmed as M_5 is slightly larger than M_1 .

Line 6800N - At 125E a well defined response of 7 milliseconds was recorded coincident with an increase in apparent resistivity. The interpreted source is disseminated sulphides.

Page - twenty two

A minor single point, 5 millisecond anomaly at 650E not associated with any change in the resistivity profile infers a disseminated sulphides source.

A depression in the apparent resistivity profile form from the background of about 5000 ohm-metres is associated with a 5 millisecond anomaly at 2250E. The source is again assessed to be disseminated sulphides.

A six millisecond , 150 feet wide anomaly was defined between 3400E and 3650E. With the exception of station 3400E, there is no reflection of this in the resistivity profiles, therefore the source is interpreted as being disseminated sulphides.

Three minor responses at 4150E, 4600E and 5400E are all associated with a slightly conductive host. However, the sources of all these are considered to be disseminated sulphides. The first named is associated with an old mine shaft and the occurrence of pyrite.

A further section of the line was surveyed using an IPR-8. With this instrument 1 millisecond is equal to approximately $1\frac{1}{2}$ millivolts/volt.

A broad response of some 8 to 9 mv/V was recorded between

Page - twenty three

5350E and 5475E centred at about 5450E. Only a slight depression in resistivity was noted over this anomaly and a slight increase in magnetic field of about 250 gammas was recorded, inferring the presence of magnetite within the disseminated sulphides which are the interpreted source. The decay curve shows only a slightly longer time constant than normal, inferring a normal grain size distribution near surface. The Great Lyell Adit is in close proximity to this anomaly. From its form, it can readily be seen that a number of other IP response of a similar nature require very careful follow-up work.

<u>Line 7400N</u> - The anomaly noted above on line 6800N between 3400E and 3650E is clearly correlated with an almost identical response on this line between 3400E and 3700E. This zone occurs within an area mapped as coarse agglomerates. Again disseminated sulphides are the suggested source as there is no significant depression in the apparent resistivity profile. Magnetite also occurs within this zone as there is a distinct 250 gamma response over this zone.

A distinct 8 to 9 milliseconds anomaly was defined centred at 5250E, with an asymmetry that suggests an east dip for this 80 feet wide source which is estimated to have a maximum depth of 50 to 70 feet. The anomaly lies within an area mapped as siltstones with shale bands.

Page - twenty four

Therefore the chargeability could be caused by either disseminated graphite or pyrite.

The 17 millisecond anomaly at 5850E is associated with a sharp change in resistivity occurring on the <u>eastern</u> side of this change. The maximum depth and width is assessed as being 60 feet and 80 feet respectively. The zone lies within an area mapped as "moraine covered", but along the postulated position of a major fault. Also along strike, shales and siltstones have been recorded. The source is therefore interpreted as being disseminated pyrite or sulphides probably of sedimentary origin. Nevertheless the zone should receive careful follow-up work.

Line 8000N - A broad 5 to 6 millisecond response was recorded at 1650E coming from a source interpreted as having a maximum depth of 80 to 100 feet and being about 100 feet wide. There is no magnetic anomaly at this point, however, to the immediate east a substantial rise in magnetic field was recorded. The source is interpreted as disseminated sulphides.

No further anomalies of significance were recorded until 6200E. At this point a rapid increase in chargeability was recorded from 3 milliseconds to in excess of 15

Page - twenty five

milliseconds. The background apparent resistivity for some hundreds of feet either side of this response is a relatively low 1000 to 1200 ohm-metres. This anomaly occurs within a zone mapped as moraine in close proximity to the mapped position of the fault referred to above. Careful follow-up is recommended as this lies within a particularly favourable geological zone.

A second but smaller anomaly was defined at 6525E, again with little or no depression in the relatively low background apparent resistivity of 1000 to 1200 ohm-metres. The source is interpreted as being either graphite or sulphides in a disseminated form.

Line 8600N - A broad response of from 15 to 18 milliseconds was recorded between 600E and 1450E within resistive background and in a magnetically quiet area. Tuffs and sediments have been recorded in the general area. The source is suggested as disseminated pyrite or perhaps graphite.

A substantial and well defined chargeability response recorded between 3820E and 4120E is interpreted as coming from two sources in close proximity centred at 3980E and 4070E. The former has a disseminated or electrically discontinuous source. There is no associated magnetic anomaly.

Page - twenty six

Coarse sheared agglomerates have been mapped in the area. The interpreted source is essentially disseminated sulphides, showing some conduction in parts.

At 4450E an increase in chargeability from 7 milliseconds to 19 milliseconds was recorded coincident with an increase in apparent resistivity. The interpreted source is disseminated sulphides.

An excellent 12 millisecond response at 6250E associated with a slight depression in the apparent resistivity profile is interpreted as coming from a disseminated graphite and/or sulphide source whose maximum width and depth is 100 feet and 50 feet respectively. The asymmetry of profile form suggests a steep west dip. This response lies in close proximity to mapped sediments and the postulated position of a major fault, <u>but</u> under glacial moraine. Careful follow-up is suggested.

<u>Line 9200N</u> - Within a broad 50% depression in the apparent resistivity profile centred at 1470E, a well defined 8 millisecond response was recorded. This is interpreted as coming from a source having a maximum depth of 40 feet or so and a width of the order of 80 feet. As there is no distortion in the magnetic field, magnetite makes no contribution to the source material. The interpreted

Page - twenty seven

source material is disseminated sulphides within the Tuffs.

A major 15 millisecond induced polarization anomaly centred at 1800E is coincident with a marked depression in the apparent resistivity profile from in excess of 3000 ohmmetres to just over 1000 ohm-metres. This response is coincident with the postulated position of a major fault and as such warrants further careful investigation. The maximum width and depth of the source is assessed to be 50 feet and 60 feet respectively.

Two minor chargeability responses of 10 and 15 milliseconds were recorded within a significant depression in the resistivity profile at 2950E and 3050E.

<u>Line 9800N</u> - A 12 to 13 millisecond anomaly at 1480E is coincident with an 85% reduction below background apparent resistivity to 300 ohm-metres. This response is clearly correlated with that seen on line 9200N at 1470E, and is more substantial. The maximum depth and width of the source is estimated to be 50 feet and 70 feet respectively, and the source material is either graphite or more likely, sulphides of a disseminated nature, but showing some conduction within the host material. This anomaly is considered of prime interest for further study.

Page - twenty eight

A second anomaly of prime interest was defined centred at 1820E within a minor resistivity depression. This anomaly is positioned on the postulated position of a major fault and correlates with the response recorded at 1800E on line 9200N. The source is interpreted to consist of disseminated sulphides within a zone of about 120 feet in width, at a maximum depth of 70 feet.

At 3680E a chargeable response of greater than 10 milliseconds was recorded from a source having a maximum depth of 100 feet, and being about 150 feet in width. The insignificant depression in resistivity and the absence of any magnetic response infers a disseminated sulphide origin. This anomaly is clearly associated with that seen on line 9200N at about 3650E.

<u>Line 10400N</u> - Within a broad resistivity low, a minor chargeability high of 5 to 7 milliseconds was noted at 1450E. This response is clearly related to that recorded at about the same co-ordinates on the previous two lines.

A major anomaly of 20 milliseconds above the 10 to 12 millisecond background was recorded at 1830E from a source estimated to have a maximum depth of about 50 feet and a maximum width of about 70 feet. The asymmetry of the profile form suggests a steep to moderate east dip - assuming of

Page - twenty nine

course a well defined body. The very minor depression in resistivity suggests only the weakest of conduction within the source. This response occurs over the proposed fault zone, and, correlates with similar anomalies described on previous lines.

Moving Schlumberger Arrays were carried out using an IPR-8 over the eastern flanks of lines 9200N, 9800N and 10400N. With this array a single substantial anomaly will be expected from a body when it is positioned within the potential dipole, and less substantial anomalies when each of the two current poles come in close proximity to the source. The effective penetration of the array is of the order of half the current dipole employed. In this case the current dipole was 500 feet and the potential dipole was 100 feet.

Line 9200N - A single point, 8 to 9 millivolts/volt response from a narrow chargeable zone was recorded from within 4600E to 4700E. The resistivity profile shows only slight reduction in the apparent resistivity, inferring a disseminated source. This anomaly occurs north along strike of an area mapped as coarse Sheared Agglomerates, which has given rise to substantial chargeability anomalies to the south.

A similar zone of less significance was recorded from between

Page - thirty

6200E and 6300E. Although the resistivity data showed some conduction, the source is still assessed to be of a disseminated nature. This anomaly occurs in the vicinity of a major fault, and within an area of particular geologic interest.

Line 9800N - A broad zone of up to 50% above background chargeability was defined centred at 5400E. The multiple image of the array makes it difficult to resolve the width of the anomaly with any accuracy, however, the presence of a greater than 50% reduction in the apparent resistivity centred at about 5480E, enhances this anomaly's interest. The geological setting is across a proposed fault line in the vicinity of extensive quartz veining, and north of the coarsely sheared agglomerate unit which has been the site for numerous significant anomalies to the south.

The 8 to 9 millivolts/volt response from a narrow source between 6100E and 6200E is assessed to come from a disseminated source as there is no depression over the anomaly at this point.

A pronounced response of up to 12 millivolts/volt was defined at $6650E \pm 50$ feet. The zone is difficult to delineate in detail due to the multiple image nature of the array. However, it is centred between 6600E and

Page - thirty one

6700E. Again only a minimal depression in the apparent resistivity profile infers a disseminated source. The anomaly occurs within an area mapped as highly sheared Siltstones. These may in fact contain either pyrite or graphite. The pronounced resistivity low at 6400E probably respresents the shear zone.

<u>Line 10400N</u> - Two sources in close proximity are assessed to lie between $3550E \pm 50$ feet and $3750E \pm 50$ feet. The latter has a slightly more conductive source. The widths are difficult to assess, but the sources lie within 100 feet of surface. The chargeability response comes from an area mapped as an Andesitic Intrusive.

East of 5000E the chargeability increases dramatically from a background of 8 to 10 millivolts/volt to a "background" of over 25 millivolts/volt as far east as the end of the line at 6800E. Within this highly chargeable zone which traverses the Tuff and highly sheared Siltstone areas west of the postulated fault at 5300E, is quite unlike any other zone surveyed over this grid. Widespread disseminated sulphides are the suggested source. Within this very high background response, four zones centred within + 50 feet of the following co-ordinates, 5450E, 5750E, 6550E and 6750E, were recorded. Only on the first and last named is there any slight reduction in the resistivity profile. The source

Page - thirty two

of all four is again suggested as <u>disseminated</u> sulphide, or if massive, electrically discontinuous. This whole zone requires careful ground follow-up.

CONCLUSIONS

- 1 The known mineralisation whether "massive" or "disseminated" would be expected to be recorded as essentially discontinuous as seen by the induced polarization method. This view is confirmed as a result of the present surveys in the vicinity of the Great Lyell Adit. It is suggested that a careful study be made of the results of this survey in the vicinity of known mineralisation, prior to an evaluation of the results presented in this report. However, it is concluded that many of the chargeable anomalies located are similar to those expected over economic mineralisation.
- 2 The apparent resistivities showed only a limited range of values between 1000 and 15,000 ohm-metres. The various rock units in the area rarely showed clear-cut boundaries between units.
- 3 The general levels of chargeability were on the whole a normal 8 to 12 milliseconds. Again, on the whole, rock units did not exhibit well defined induced
Page - thirty three

polarization levels.

- 4 The magnetic field showed only limited variation within the area surveyed. The only rock type to show a significant signature was the Andesite Intrusive unit. However, a number of the induced polarization anomalies have associated magnetic responses indicating the presence of magnetite.
- 5 The present survey has efficiently outlined chargeable responses for further study. These have been assessed on the physical properties studied, namely, chargeability resistivity and magnetic field. However, potential economic interest must be biased by the geological and geochemical environment of each anomaly and not their geophysical properties along.
- 6 In spite of steep topography and bad weather, it is concluded that the present gradient technique was the most efficient manner in which to carry out a reconnaissance survey.
- 7 The moving source Schlumberger array proved to have the noise rejection capabilities calculated for it. However, this was achieved at the cost of a loss of resolution and penetration.

RECOMMENDATIONS

1 - An assessment of the potential economic interest of each of the induced polarization anomalies located on the Little Owen grid have been made on a basis of their similarity to the geophysical signature of the known orebodies. The three priorities have been assessed on their likeness to the "type" mineralisation

Line	Station	Max.I	Depth	Max.V	Vidth	Magnetic Correlation	Priority
800N	1750E	80	feet	80	feet?	No	с
800N	2250E	50	feet	50	feet	No	С
800N	3525E	60	feet	80	feet	No	С
1400N	1050E	?		7	?	No	С
1400	1500E/ 1750E	?		250	feet	No	С
1400N	3100E	60	feet	50	feet	Yes	В
2000N	750E	50	feet	100	feet	No	В
2000N	1100E/ 1700E	?		600	feet	No	С
2000N	2600E	50	feet	50	feet	Yes	С
2000N	3150E	50	feet	50	feet	Yes	С
2600N	450/1000E	?		550	feet	Yes	С
2600N	1200E/ 1400E	?		200	feet	Yes	С
3200N	600/1400E	?		800	feet	Yes	С
3200N	310E	50	feet	60	feet	Yes	A*
3200N	2750E/ 2850E	75	feet	100	feet	No	С
3800N	650/1150E	25 '	(west)	500	feet	No	С
3800N	1850E	50	feet	80	feet	Yes	С

Page - thirty five

Line	Station	Max.	Depth	Max.	Width	Magnetic Correlation	Priority
4400N	850/1000E	50	feet	150	feet	No	A*
4400N	2050E	70	feet	80-10	00 feet	No	A *
4400N	2750E/ 3100E	50	feet(w	est) 3:	50 feet	Yes	В
4400N	3700E	25	feet	40	feet	No	Α
5600N	1825E/ 1975E	25	feet	125	feet	Yes	В
5600N	2350E	25	feet	100	feet?	No	B*
5600N	2750E	50	feet	80	feet	Yes	B*
5600N	3150E	20	feet	25	feet	No	B*
5600N	4550E	50	feet	100	feet	No	B*
5600N	5530E	120	feet	80	feet	No	A .
6200N	200E	70	feet	100	feet	Yes	С
6200N	4575E	70	feet	100	feet	No	С
6200N	4820E	50	feet	80	feet	No	С
6200N	4850E	120	feet	80	feet?	No	В
6200N	5130E	150	feet	100	feet?	No	B*
6200N	5450E/ 5750E	150	feet?	300	feet?	No	B*
6200N	5950E/?	?		?		?	С
6800N	125E	50	feet	80	feet	No	В
6800N	6 50E	?		?			С
6800N	2250E	50	feet	80	feet	Yes	В
6800N	3400E/ 3650E	50	.feet(w	est) 2	50 feet	Yes	A *
6800N	4150E	70	feet	100	feet	Yes	в*

0³0

<u>Page - thirty six</u>

Line	Station	Max.Depth	Max.	Width	Magnetic Correlation	Priority
6800N	46 00E	70 feet	50	feet	No	С
6800N	5400E	100 feet	100	feet	No	С
6800N	5450E	140 feet	120	feet	Yes	A*
7400N	3400E/ 3700E	50-70 feet	300	feet	No	A*
7400N	5250E	50-70 feet	80	feet	No	В
7400N	5850E	60 feet	80	feet	No	A *
8000N	1650E	80-100 feet	100	feet	No	С
8000N	6200E	25 feet	80	feet	No	A *
8000N	6525E	50 feet	50	feet	No	A *
8600N	600/1450E	1 00 feet	850	feet	No	С
8600N	3980E	50 feet	150	feet	No	A*
8600N	4070E	50 feet	80	feet	No	A*
8600N	4450E	50 feet	?		Yes	В
8600N	6250E	50 feet	100	feet	No	А
9200N	1470E	40 feet	80	feet	No	В
9200N	1800E	60 feet	50	feet	No	А
9200N	2950E	50 feet	80	feet	No	С
9200N	3050E	25 feet	?		No	С
9800N	1480E	50 feet	70	feet	No	A*
9800N	1820E	70 feet	120	feet	No	A *
9800N	3680E	1 00 feet	150	feet	No	В
10400)	N 1450E	?	?		No	С
10400	N 1830E	50 feet	70	feet	No	А

033

ť.

Page - thirty seven

Schlumberger Array

Line	Station	Depth	Magnetic Correlation	Priority
9200N	4600E/ 4700E	within 50'		В
9200N	6200E/ 6300E	within 50'		в
9800N	6100E/ 6200E	within 50'		В
9800N	6600E/ 6700E	80 feet		В
10400N	3500E/ 3600E	100 feet	No	с
10400N	3700E/ 3800E	100 feet	No	с
10400N	5000E/ 6800E	See text		А

- 2 Those anomalies marked with an asterisk are recommended for local detailing with interline spacing of about
 200 feet.
- 3 Of greater importance than their similarity or otherwise to the "type" signature, is their geological and geochemical setting. Therefore careful evaluation of each of these anomalies is recommended prior to further geophysical work and/or investigation by diamond drilling.

Page - thirty eight

Respectfully submitted on behalf of:

SCINTREX PTY. LTD.

[] [] 4 99

A.W. HOWLAND-ROSE, MSc, DIC, AMAusIMM, FGS.

GEOPHYSICIST

•

.

,

APPENDIX 'I.P.'

.

.

INTRODUCTION

For the benefit of those who are unfamiliar with the Induced Polarization method in general, or with the pulse-type method in particular, a few introductory remarks will be directed on the Induced Polarization, or overvoltage, phenomenon. Those who wish a fuller treatment of the subject are directed to Seigel (1962), which paper also includes an extensive list of references.

Induced Polarization in its broadest sense means a separation of charge to form an effective dipolar (polarised) distribution of electrical charges throughout a medium under the action of an applied electric field. When current is caused to pass across the interface between electrolyte and a metallic conducting body, double layers of charge are built up at the interface, in the phenomenon known to electrochemists as "overvoltage". This is the phenomenon which can be utilised for the detection of metallic conducting, rock-forming, minerals such as most sulphides, arsenides, a few oxides and, unfortunately, graphite. In addition, effective dipolar charge distribution occurs to some extent in all rocks, due to ion-sorting in the fine capillaries in which the current is passing.

Page - two

Induced Polarization responses may therefore arise from metallic or non-metallic agencies. Fortunately, the latter generally falls within fairly low and narrow limits. for almost all rock types, although there is still no reliable criterion for differentiating overvoltage responses from graphite and metallic sulphides, or for distinguishing between the responses of one type of sulphide and another. Despite these limitations the Induced Polarization method has amply demonstrated its value in mineral exploration since its initial development as a useful exploration tool in 1948 (ed. Wait, 1959).

DESCRIPTION OF METHOD AND EQUIPMENT

For the present programme the pulse or time domain system was employed, using a Scintrex Induced Polarization unit. The standard current-wave form with the unit is two seconds on-time and two seconds off-time. (see Figure 1). This unit features the Newmont type self-triggered receiver which operates remote from the current transmitting equipment. Three fundamental quantities are measured with this unit - the chargeability of 'M' measurement, the 'L' measurement and the resistivity.

The receiver integrates the area under the decay curve during the time interval from 0.45 seconds to 1.1 seconds

MEASUREMENTS TAKEN

Energising frequency is a square wave having a frequency of 0.125 cps.

Fig. 1

Page - three

after termination of the primary current pulse. This integral normalised with respect to its corresponding primary voltage is the chargeability or 'M' measurement, that is, the fundamental Induced Polarization characteristic. It is in units of milliseconds. The Induced Polarization phenomena is dependent on the existence of electronically conducting material within the matrix of ionically conducting material. The chargeability is therefore a measure of the presence of electronically conducting material within the ground being tested.

The second quantity measured is the area over the transient decay curve between 0.45 seconds and 1.75 seconds of the current off-time. This measurement is designated the 'L' measurement and is also in units of milliseconds. The ratio L/M gives a curve factor related to the shape of the transient voltage curve, and is a measure of the rate of decay of the transient voltage. This is of secondary diagnostic value in that the rate of decay of the transient voltage is partially a function of particle size. A large L/M ratio reflects a short time constant, commonly associated with finely disseminated sulphide or graphite, whereas a small L/M ratio reflects the longer time constants associated with the larger sized metallic particles.

Page - four

The L/M ratio is also effective in determining the presence of electromagnetic coupling effects. With the Scintrex Induced Polarization unit, electromagnetic coupling effects are essentially eliminated by an 0.45 second delay-time following termination of the primary current pulse before measurement of the transient voltage commences. However, in extremely low resistivity areas coupling may occur. Under these conditions the presence of electromagnetic coupling can distort the Induced Polarization response, and it is extremely important to know when this occurs. The presence of such coupling is immediately recognizable from the L/M ratios.

Resistivity measurements are also made as an integral part of all Induced Polarization measurement using the Scintrex Induced Polarization unit. The resistivity values are of primary importance in determining subsurface geological features such as contact zones, faulting, etc., and are of assistance in mapping the geology in general.

Electrode geometries (see Figure 2) utilised in obtaining field measurements are important and no one electrode array is applicable for all conditions. In areas where a low resistivity oxidised surface layer overlies a much higher resistivity freshrock, a high degree of

COMMONLY USED ELECTRODE ARRAYS

CLOSE - COUPLED ARRAYS

JA8

DIPOLE - DIPOLE

POLE - DIPOLE

GRADIENT ARRAY

CI C2> 20 x Pi Pz (3000 ft)

Fig. 2

Page - five

masking occurs using any of the close-coupled arrays, such as pole-dipole or dipole-dipole. An electrode spacing many times greater than the depth to freshrock must be used in order to obtain responses reasonably representative of the freshrock. With such large electrode spacings the physical properties are effectively averaged over so large a volume that we lose the ability to detect moderate sized bodies of polarizable material. However, under these conditions the gradient array is both feasible and desirable in that it minimises the effects of masking and at the same time has a high degree of resolution for small targets.

In the present areas of investigation, abnormal induced polarization responses may be expected to arise from the electronically conducting sulphide minerals such as pyrite, pyrrhotite, chalcopyrite and pentlandite, plus graphite and magnetite. The response from magnetite has been found to be quite variable and somewhat unpredictable, reflecting the great variation in the mode of electrical conduction in this material. It is not always possible to differentiate between these potential sources of high chargeability from the Induced Polarization and resistivity data alone. Complementary geophysical, geochemical and geological data enable a more complete interpretation to be made of the Induced Polarization data.

Page - six

REFERENCES

Seigel, 1962

"Induced Polarization and Its Role in Mineral Exploration" H.O. Seigel, Canadian Mining and Metallurgical Bulletin, April, 1962.

ed. Wait, 1959

"Overvoltage Research and Geophysical Applications" editor J.R. Wait, Pergamon Press, London, 1959.

 $\{ |$

F I

APPENDIX IPR-8

రా

02

INTRODUCTION

I

The basic equipment required for an Induced Polarization survey consists of a transmitter, a receiver, wire and electrodes.

Most time domain induced polarization transmitters transmit square waves with equal "on" and "off" times. Polarity is automatically changed between the pulses. The waveform shown below indicates how the current is usually transmitted. The pulse times range from 1 to 8 seconds.

The transmitter is powered by batteries (portable type units) or a motor driven generator. Scintrex manufactures various time domain induced polarization transmitters ranging in power from 25 watts to 15 kW. The choice of a transmitter depends on various factors such as: the electrode spacings to be employed, contact resistance and the resistivity of the subsurface. The IPR-8 receiver is designed for use with any time domain induced polarization transmitter.

The IPR-8 time domain induced polarization receiver is of the state-of-the-art design, packaged in a rugged and portable manner. Using integration and automatic normalization, it measures the characteristics of an induced polarization decay curve set up by overvoltage and other effects occurring in rocks. When induced polarization effects (such as due to metallic-non metallic interfaces in rocks) occur, the waveform received at the receiver is not the same square wave as transmitted by the transmitter. The waveform shown below indicates the sort of wave distortion which is caused by the induced polarization phenomena.

FIGURE 1B

SPECIFICATIONS

The IPR-8 has the following specifications:

Input Impedance

II

Primary Voltage (Vp) Range

Accuracy of Vp Measurement

Vs/Vp Ranges

Vs/Vp Accuracy

Primary SP Buckout Range

Accuracy of SP Measurement

Automatic SP Tracking Range

Continuity Meter Reading

50 or 60 Hz Powerline Rejection

Low Pass Filter

Required Stability of Transmitter Timing

Operating Temperature Range

Dimensions

Weight, Complete with Lid and Batteries

Power Supply

3 megohms

300 microvolts full scale to 40 volts full scale in 10 ranges

<u>+3% of full scale</u>

20 and 100 mV/V full scale

+3% of full scale

<u>+</u>l volt

<u>+3% +5</u> mV

6 x Vp, maximum <u>+1</u> volt

0 - 500 k ohms

-50 db (300x)*

6 db/octave with fc = 20 Hz and 12 db/octave with fc = 36 Hz

Need only exceed measuring program selected (1 or 2 seconds)

-30°C to +60°C

320 mm x 135 mm x 160 mm

3.6 kg

4 D cells - Eveready No. 1050 or equivalent; estimated battery life 2 months intermittent duty at 25°C

l Alkaline cell Eveready No. E91 or equivalent; estimated life l year

* 50 or 60 Hz depending on power system.

 $\int \int$

QUANTITIES MEASURED BY THE IPR-8

Figure 2 shows the different parameters measured by the IPR-8. The usual measurements are Vp, the received primary voltage and "M", a parameter related to the transient curve. The Vp measurement is used in resistivity calculations while M is the chargeability (induced polarization) parameter. In addition, absolute values of the self-potential (SP) can be measured.

In all cases, the M quantity measured by the IPR-8 is the mean value of the transient voltage over a selected time interval to which the following normalizations have been applied:

- normalization for the length of the integration interval
- normalization for the primary steady state voltage (Vp)
 - normalization for curve shape
 - normalization for number of pulses

The units of the quantities measured are, therefore, dimensionless and are normally expressed in "millivolts per volt".

In the various modes of operation the transient voltage following the interruption of the primary current pulse is either integrated over one long period of time or sliced into either 3 or 6 slices. By using 6 slices, a good record of the decay curve shape can be obtained. The 3 slice mode gives some curve shape information and provides an economical standard mode in which to operate. The centre slice of this mode is reasonably close to the measurement made by the Scintrex IPR-7 and other receivers of the "Newmont Type", while the first and last slices can be used for a rapid check of curve shape. A more precise relationship is, however, presented later in this section.

Figure 2 shows the actual times used. For the receiver to operate, the transmitter timing may be any time period of one second or greater (i.e. $t \ge 1$ second) although transmitter and receiver timings of 2 seconds are considered normal for most surveys. Equal on and off timing assures the best noise rejection as the signal is averaged over the longest possible time, and the automatic self-potential adjustment is made closest to the reading time.

With the receiver set at t = 1 second, the decay $(\delta/2)$ from the current-off time to the commencement of the measurement is 65 milliseconds and the slice width (δ) is 130 milliseconds. With the receiver set at t = 2 seconds the delay is 130 milliseconds and the slice width is 260 milliseconds. Fuller information on the programs is available from the tables in Figure 2.

726 010 04

III

SECONDARY DECAY CURVE SHAPES AS APPLIED TO THE INTEGRATORS

t	5	delay	waiting	M 11			M 31			M 32			M 33			ionath	
Sec.	sec. O	time	time	from	to	mean	length	from	to	mean	from	to	mean	from	to	mean	langtn
1	130	-65	25	65	845	455	780	65	325	195	325	585	455	585	845	715	260
2	260	130	50	130	1690	910	1560	130	650	390	650	1170	910	1170	1690	1430	520

t		M 61			M 62	2		M63	}		M64			M 65			M 66		langth
Sec.	from	to	mean	from	to	mean	from	to	mean	from	to	mean	from	to	mean	from	to	mean	rengrii
1	65	195	130	195	325	260	325	455	390	455	585	520	585	715	650	715	845	780	130
2	130	390	260	390	650	520	650	910	780	910	1170	1040	1170	1430	1300	1430	1690	1560	260

FIGURE 2

PARAMETERS MEASURED WITH TIMES OF RECEIVER PROGRAM IN MILLISECONDS.

FIGURE 3

THE SIGNIFICANCE OF CURVE SHAPE INFORMATION GAINED USING 6 SLICE READINGS.

Each integration is normalized with respect to the Standard Induced Polarization Decay Curve which has been established by Newmont Exploration Limited. (ref. Dolan and McLaughlin in bibliography) This is achieved by choosing the sensitivities of the integrators so, that if the curve shape is normal, all slices within a given mode show the same amplitude of measurement. A further normalization is built in for the slice width, be it full, one-third or one-sixth of the total integration period. The net effect is that the reading will be the same regardless of the slice measured, providing that a standard transient decay curve form is present and that the same measuring cycle is used for transmitter and receiver (1 second or 2 seconds). Any departure from this standard curve form will be immediately obvious to the operator, without performing any calculations. For instance, a steeper decay will give a higher reading on earlier slices than on later slices. Reconstruction of the actual decay curve is easily effected by using the correction factors given in Table 1.

The shape of a time domain induced polarization decay curve can be altered by electromagnetic or interline coupling, by variations in the average size or degree of interconnection of the metallic particles in the bedrock or by other I.P. sources. Figure 3 illustrates the advantage of breaking the decay curve into slices. Utilizing only one wide slice, there is no indication of the shape of the decay curve. Positive electromagnetic coupling effects or small particle size may give rise to an abnormally short time constant (Case A) which, for multislice modes will be indicated by higher normalized readings of the earlier slices with respect to the later slices. An increase in the later slices over the earlier ones (Case B) may imply a longer time constant due to a minor negative EM transient or I.P. responses from large metallic particles, etc. Cases C and D, where the values of the initial slices are considerably reduced or are even negative, show the effect of negative EM transients of increasing amplitude.

A system of symbols has been created to indicate each of the measurable slices.

The general symbol is $M_{t,xy}$ where:

- t is the timing chosen (i.e. 1 or 2 seconds)
 x is the number of slices in the mode chosen
 (i.e. 1, 3 or 6)
- y is the number of the slice referred to (i.e. 1, 2, 3, 4, 5 or 6)

726 010 07

Wherever two subscripts only are given, eg. M_{32} , it is understood to apply equally for t = 1 sec. or t = 2 sec.

A chargeability reading is defined by the following formula:

$$M = \frac{V_{\rm S} \cdot 1000}{V_{\rm p}} \qquad \text{in } mV/V$$

where

and

t1 = time at beginning of slice

 $t_2 = time at end of slice$

 $\mathbf{v}_{s} = \frac{\mathbf{t}_{1} \int^{\mathbf{t}_{2}} \mathbf{v}_{s} \, \mathrm{d}\mathbf{t}}{\mathbf{t}_{x}} + \mathbf{v}_{x}$

V_X = residual transient voltage at the end of the automatic self potential correction

 $t_r = t_2 - t_1$, i.e. the integrating period

Chargeability values, uncorrected for curve shape, can be easily calculated if required. Normalizations for all slices are made using the M_{232} value as reference. In other words, there is no curve shape normalization applied to this slice; the M_{232} readout is, therefore, directly as measured. The same statement holds for the M_{132} slice, however, its value is one-half the value for M_{232} provided that the transmitter timing matches the receiver timing.

To restore the true transient curve shape (M true), the observed M readings (M read) are multiplied by the factors in Table 1.

08

TABLE 1

 $M_{true} = M_{read} \cdot k_1$

Slice	kl	
Mll	1.09	
M ₃₁	1.47	
M ₃₂	1.00	- NORMAL
м ₃₃	0.81	
M ₆₁	1.68	
^M 62	1.27	
^м 63	1.06	•
^M 64	0.94	
M ₆₅	0.85	
^M 66	0.78	

For the ideal "normal" I.P. transient curve form $M_{2xy} = 2M_{1xy}$ where M_{2xy} is for a 2-second on-off transmitter cycle and M_{1xy} is for a 1-second on-off cycle. The relationship between readings taken with differing transmitter and receiver timings is more complicated, particularly if the curve shapes are not normal.

Table 1 still applies for the case where the transmitting times are longer than the receiving times in order to reconstruct the relative curve shape.

10

Relationship between IPR-8 and "Newmont Type" Receiver Measurements

The "Newmont Type" receivers (eg. Scintrex IPR-7) integrate the area under the transient curve from 0.45 seconds to 1.1 seconds. This is then multiplied internally be an instrumental factor to obtain the chargeability M in milliseconds.

For a normal decay curve form, the approximate relationship between the IPR-8 measurements and the Newmont Type chargeability is given by M_{232} (in mV/V) = M_N (in milliseconds) • 0.7.

3800 4000 5000 5200 5400 5600 E

SURVEYED AND COMPILED BY

SCINTREX PTY LTD.

NOV 73 MARCH 74

JOB NO. TAS. OI8A SHEET 1 of 2 PLATE 1 84-222.8

. .

. .

•

.

ν.

•

BASE LEVEL = 0

RESISTIVITY SCALE: 2" = 1 Logarithmic cycle BASELEVEL = 5000 Ohm-metres

SYMBOL = ·---·

l" = _250 gamma MAGNETIC SCALE :

BASE LEVEL = 62,500

SYMBOL = *------*

JOB No. TAS. OI8A SH

SURVEYED AND

SCINTREX F

NOV.'74 M

ITY SCALE : I" = 10 Milliseconds BASE LEVEL = 0

SCINTREX PTY. LTD.

NOV.'74 MAR'74

SCALE : 1" = 200'

332063

5 cm

062

400

.

SCALE: 2" = I Logarithmic cycle BASE LEVEL = 5000 Ohm-metres SYMBOL = ·---·

l" = 250 gamma SCALE : BASE LEVEL = 62,500

JOB NO. TAS. OIBA SHEET 2 of 2 PLATE 1 84-2228

LEGEND

RESISTIVITY CONTOURS IN OHM -METRES
CONTOUR VALUES IN 1000'S e.g. 5= 5000
SURVEYED LINES
GRADIENT BLOCK BOUNDARIES
RESISTIVITY LOW

THE MOUNT LYELL MINING AND RAILWAY COMPANY LTD.

LITTLE OWEN GRID WEST COAST, TASMANIA

RESISTIVITY CONTOUR PLAN

SURVEYED AND COMPILED BY SCINTREX PTY. LTD. NOV. '73 MARCH'74

LEGEND

MAGNETIC INTENSITY CONTOURS

MAGNETIC LOW

ADD 62,000 \$ TO VALUES SHOWN FOR TOTAL MAGNETIC FIELD INTENSITY

THE MOUNT LYELL MINING AND RAILWAY COMPANY LTD.

LITTLE OWEN GRID WEST COAST, TASMANIA

MAGNETIC CONTOUR PLAN

3 3 2 0 6 6 SURVEYED AND COMPILED BY SCINTREX PTY. LTD.

NOV.'73 MARCH'74.

23(b)

A REPORT ON GRADIENT AND SCHLUMBERGER ARRAY ELECTRICAL INDUCED POLARIZATION SURVEYS OVER THE LITTLE OWEN (DORA-HUXLEY) GRID ON BEHALF OF THE MOUNT LYELL MINING AND RAILWAY COMPANY LTD.

SECTION IL

D of M A.O. C.G, E.0. 0.S.J .. Registrar D. DIR. 2 OCT 1984 E & 1L DEPT. OF MINES REF. No. 10,076 84

TABLE OF MEASUREMENTS

■ 001

P

STATION INTERVAL	IN	FEET
RESISTIVITY	IN	OHM-METRES
CHARGEABILITY (M2)	IN	MILLIVOLTS/VOLT

GRADIENT ARRAY

002

 \bigcirc

CURRENT ELECTRODES ON LINE 6200 AT 6250E AND 3750E

LINES 5600 6200 6800

Resistivity	Chargeability	L/M	Magnetics
	- · ·		
5092	10,8	· .	
7343	9.8		
4724 3585	11.3 12.2		
4107	7.9		
3240 ·	7.4		
2412	8.55		
2911 3559	8.1 9.45	· · · · ·	
2394	6.35		
1764	11.6		
1826 1888	25.5 24.0		
5096 5727	14.2 12.6		
4979 8073	10.0 11.1		
5377	6.5		
5260	5.8		
2610	13.5		
2625	5.45	•	
2418 ·	9.15	÷	_
2903	12.45		-
	Resistivity 5092 7343 4724 3585 4107 3240 2412 2911 3559 2394 1764 1826 1888 5096 5727 4979 8073 5377 5260 2610 2625 2418 2903	Resistivity Chargeability 5092 10.8 7343 9.8 4724 11.3 3585 12.2 4107 7.9 3240 7.4 2412 8.55 2911 8.1 3559 9.45 2394 6.35 1764 11.6 1826 25.5 1888 24.0 5096 14.2 5727 12.6 4979 10.0 8073 11.1 5377 6.5 5260 5.8 2610 13.5 2625 5.45 2418 9.15 2903 12.45	Resistivity Chargeability L/M 5092 10.8 7343 9.8 4724 11.3 3585 12.2 4107 7.9 3240 7.4 2412 8.55 2911 8.1 3559 9.45 2394 6.35 1764 11.6 1826 25.5 1888 24.0 5096 14.2 5727 12.6 4979 10.0 8073 11.1 5377 6.5 5260 5.8 2610 13.5 2625 5.45 2418 9.15 2903 12.45

003

)

•
rage 190 332071

Station	Resistivity	Chargeability	L/M	Magnetics
5150E	1573	13.45		
5200E	1571	8,75		
5250E	2211	6.6		
5350E	2541	4.25		
5450E	1945	7.9		
5550E	1669	12.1		
5600E	2200 -	11.7	•	
5650E	3249	13.1		
5700E	2760	13.1	• •	
5750E	2618	10.2		
5850E	1018	5.75		
5950E	2040	10.25		
6050E	3856	16.8		
LINE 6800				
4950E	4974	12.1		
5000E	3584	13.3		
5050E	4335	10.4	· · · ·	
5150E	4020	10.9	·	
5250E	5134	9.6		
5350E	2842	13.85		· · ·
5450E	2891	16.2		н н. Н
5550E	2560	9.9		
5650E	4301	6.8		
5750E	3552	10.5		
5850E	3943	7.5		· · · ·
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		·

.

004

)

 \bigcirc

•

GRADIENT ARRAY

005

) •

CURRENT ELECTRODES ON LINE 2000N AT 1250W AND 3750E

LINES	800N
	1400N
	2000N
	2600N
	3200N

ELECTRICAL INDUCED POLARIZATION SURVEY

AND

TOTAL FIELD MAGNETIC SURVEY

TABLE OF MEASUREMENTS

STATION INTERVAL	IN	FEET
RESISTIVITY	IN	OHM-METRES
CHARGEABILITY	IN	MILLISECONDS
TOTAL MAGNETIC FIELD	IN	GAMMAS

NOTE :

00

Stations intervals are listed every 100 feet in the left hand column. Chargeability and resistivity data in line with this co-ordinate represent the electrical characteristics of the material contained within the 100 feet dipole centred at this point. Readings displayed between these co-ordinates represent intermediate stations.

The magnetic data was invariably taken every 100 feet and represents the total magnetic field at that point.

8800 9920 5750 5660 4600 6540 6940	7.8 7.0 6.5 6.5 6.8 8.1	0.96 0.86 0.91 0.82 0.74 0.84	62,704 62,690 62,700 ±20 62,719 62,728 62,728
8800 9920 5750 5660 4600 6540 6940	7.8 7.0 6.5 6.5 6.8 8.1	0.96 0.86 0.91 0.82 0.74 0.84	62,704 62,690 62,700 ±20 62,719 62,728 62,728
9920 5750 5660 4600 6540 6940	7.0 6.5 6.5 6.8 8.1	0.86 0.91 0.82 0.74 0.84	62,690 62,700 ±20 62,719 62,728 62,728
5750 5660 4600 6540 6940	6.5 6.5 6.8 8.1	0.91 0.82 0.74 0.84	$62,700 \pm 2$ 62,719 62,728 62,728
5660 4600 6540 6940	6.5 6.8 8.1	0.82 0.74 0.84	62,719 - 62,728 - 62,728
4600 6540 6940	6.8 8.1	0.74	62,728 - 62 728
6540 6940	8.1	0.84	62 728
6940		VIUT	-
FF00	9.8	0.82	62,727
5530	9.8	0.87	62,/41
6820	8.8	0.74	62,742
4960	9.6	0.71	02,/83 - -
4250 5180	11.3	0.78	62,753
6860	7.4	0.92	62,752 -
5810	9.6	0.83	- - -
5190	8.3	0.78	62,752
6680	9.2	0.90	62 710
4810 5260	9.9 9.0	0.86	-
6950 7110	8.4 9.0	0.76 0.89	62,718 - -
4510	13.3	0.83	62,681
4180	10.7	0.75	62,646
4170	9.2	0.85	02,8/4
4280	7.9	0.86	02,668
6850	7.3	0.90	62,836 - 62,727
	5810 5190 6680 4810 5260 6950 7110 4510 4180 4170 4280 6850	5810 9.6 5190 8.3 6680 9.2 4810 9.9 5260 9.0 6950 8.4 7110 9.0 4510 13.3 4180 10.7 4170 9.2 4280 7.9 6850 7.3	58109.60.8351908.30.7866809.20.9048109.90.8652609.00.8969508.40.7671109.00.89451013.30.83418010.70.7541709.20.8542807.90.8668507.30.90

<u>ز ا</u>

)

007

ye in

Station	Resistivity	Chargeability	L/M	Magnetics
2250E	2430	12.4	0.67	
_	3020	6.7	0.97	62,765
2350E	3730	9.5	0.63	-
2450E	2580	7.0	0.61	62,686
			,	62,781
2550E	3420	6.4	0.86	
2650E	2120	7.8	0.74	62,722
				62,692
	•		•	
LINE 1400N				
50W	4130	8.0	0 AA ·	62,914
50E	4250	10.3	0.67	
	· · ·		•••-•	62,806
150E	4120	9.4	0.53	
250F	5200	7 0	0 67	62,731
LJUL	5500	1.9	0.07	- 62 756
350E	5420	6.1	0.56	02,700
AFOF				62,726
450E	4050	5.1	0.65	-
550F	3070 4630	0,0	0.69	62,6/3
JUCE	5170	10 1	0.08	- 62 667
650F	5720	9 1	0.72	02,007
0002	5200	0 /	0.02	62 606
750E	4760	9.4	0.59	02,090
	0		0.70	62,685
850E	4700	7.8	0.55	-
0505	0.000		·	62,690
950E	3650	5.5	2.28	
10505	3600	10 5	1 24	62,692
10302	3000	10.5	1.24	- 52 602
1150E	6070	6.2	1.52	-
				62,698
1250E	7070	9.0	0.83	_
12505	5000		0.60	62,685
1330E	. 5220	1.6	0.66	- 60 677
1450E	7080	8.5	0.88	0∠,0//
	4400	10.8	D.63	62,670
1550E	4480	11.1	0.68	
			-	62,64 6
				-

Page Inree

Station	Resistivity	Chargeability	L/M	Magnetic
1650E	4580	12.1	0.77	-
1750E	3980	10.4	0.44	62,619
1850E	3600	7.5	0.64	02,040 - 62,600
1950E	2120	9.4	0.64	62,000 - 62,768
2050E	2660	7.0	0.71	62,715
2150E	2330	8.1	0.62	62,652
2250E	2280	6.1	0.62	62,631
2350E	2060	6.5	0.84	62.658
2450E	2790	8.3	0.76	62,905
2550E	2800	7.3	0.96	62,843
LINE 2000N 50E	3290	8.1	1.09	62,767
150E	3070	6.5	1.08	62,802
250E	3250	5.9	0.83	62,704
350E	4280	4.4	0.75	62,764
450E	5340	3.1	0.90	62,682
550E	4330	5.9	0.90	62,800 - -
650E	5360	8.8	0.89	02,747 - 62 690
750E	3680 4070 4370	12.3 11.0 7.5	0.96 0.98	62,657
950E	3540	7.1	0,96	62,629
1050E	4390	5.4	1.02	62,717 - 62,674
1150E	5360	8.4	1.01	62.669

.

003

.

1-

Station	Resistivity	Chargeability	L/M	Magnetics
1250E	4830	8.8	0.85	
1350E	3570	10.8	0.97	62,665
1450E	4620	11.5	0.94	62,649
1550E	4070	9.6	0.99	62,638 -
1650E	5610	9.0	0.98	62,585
1750E	2880	5.3	0.94	62,575
1850E	3100	6.5	0.97	62,652
1950E	2380	6.1	0.95	62,709 -
2050E	3030	5.5	1.06	62,859 -
2150E	3310	4.8	1.06	62,854
2250E	2320	3.1	1.26	62,992 -
2350E	1645	3.5	0.94	62,968
2450E	2420	5.5	1.09	62,839
2550E	1690	4.9	1.00	62,952 -
2650E	1805	5,5	1.13	62,974
				62,933
THE SCOON				
50E	2860	6.7	0.97	62,692
150E	3590	5.2	1 05	62,637
250E	5290	2.0	1.00	62,596
350F	4450	4.0	1,70 0 70	62,380
450F	3230	4.0	0.70	62,6 81
450L	3230	0,1	0.79	- 62,647
JOUL	4120	8.6	0.81	62,865

Ï

)

-0°

Station	Resistivity	Chargeability	L/M	Magnetics
650E	4130	8.5	0.94	
750E	4430	10.5	0.84	62,827 -
850E	3550	11.5	0.87	62,693
950E	3540	11.8	0.85	62,596
1050E	4080	8.0	1.04	62,601
1150E	3280	9.8	1.00	62,928
1250E	2930	12.9	0.91	62,945
1350F	3650	12.5	0.91	62,660
1450F	6000	10 4	0.01	62,632
15505	4240	10.4	0.91	62,725
1000	4240	9.2	0.97	62,549
100UE	5150	8.3	0.96	62,646
1/50E	2760	6.3	0.95	62,796
1850E	3500	6.1	0.98	62.781
1950E	3420	7.0	1.04	63,106
2050E	2840	5.3	1.00	63,183
2150E	2580	5.9	0.98	62,932
2250E	2235	4.4	0.98	02,788
2350E	2060	6.2	1.02	62,811
2450E	2860	5.3	0.85	62,752
2550E	2160	6.1	0.97	62,789
2650E	3220	3.8	1.13	62,774
				62,685
· · · · · · · · · · · · · · · · · · ·			· ·	
LINE 3200N	· · · · · · · · · · · · · · · · · · ·	•	• .	62 705
50E	3980	8.5	1.00	-

2

.)

)

Page Five

Station	Resistivity	Chargeability	L/M	Magnetics
150E	3980	7.9	0.89	-
250F	3590	6 3	0 02	62,602
	3770	30.3	0.60	62.691
350E	3290	21.0	0.63	-
4505	3330	4.6	0.89	62,863
4502	2100	4.8	1.00	- 62 629
550E	3100	7.8	0.89	-
CEOF	2010		a ' a a	62,586
3000	3610	10.9	1.01	- 60 605
750E	2090	14.9	0.96	02,020
				62,765
850E	1830	12.0	0.94	-
950E	2310	12.5	<u> 96 0</u>	62,/0/
1			0.50	62,879
1050E	3740	9.5	1.10	-
1150F	1885	14.7	0 02	62,679
	1000	***/	0.92	62.925
1250E	2500	12.9	0.81	
12505	E100	10.0	0.00	62,948
10000	5190	10.9	0.69	62,761
1450E	4240	7.5	0.77	-
15505	0400	0.0		62,582
10006	8420	9.1	0.78	62 580
1650E	6680	8.3	0.82	-
				62,631
1750E	4220	6.6	0.68	-
1850E	3850	6.4	0.91	02,0/1
				62,606
1950E	3890	6.3	0.87	-
2050E	3520	76	0.80	62,620
			0.00	62,673
2150E	2410	8.0	1.00	-
2250E	2520	75	U 03	62,629
22002	L D L V		0.55	62,620
2350E	3270	7.5	1.00	-
2450F	3130	5 0	1 00	62,614
LTUVL	0100	J.U	1.00	- 60 E01

aye Jin

aye seven

Station	Resistivity	Chargeability	L/M	Magnetics
2550E	4460	2.5	1.32	60 E40
2650E	3910	6.2	1.02	62,548 - 62,415

 \bigcirc

. .

GRADIENT ARRAY

01⁴

CURRENT ELECTRODES ON LINE 2000N AT 1000E AND 6000E

LINES	800N
•	1400N
	2000N
	2600N
	3200N

FAYE EIGHT

332082

Station	Resistivity	Chargeability	L/M	Magnetics
LINE 800N	<u>, , , , , , , , , , , , , , , , , , , </u>			
2450E	4160	5.4	0.80	62,686
2550E	4410	3.5	0.71	62,781
2650E	3870	6.3	0.68	62,722 -
2750E	4250	8.5	0.68	62,692
2850E	2260	5.7	0.72	62,771
2950E	4180	8.7	0,75	62,761 -
3050E	5430	8.8	0.57	62,793
3150E	4030	8.6	0.73	62,817
3250E	9070	4.5	1.00	62,907
3350E	7000	4.2	0.95	62,820
3450E	4640	4.3	1.00	62,791
3550E	8110 8720	9.6 10.0	0.78 0.98	62,786
	7780	8.0	1.00	-
LINE 1400N	0000	A 7	0.06	62,631
ZJOUE	2030	4.7	0.90	62,658
24505	4460	6.0	0.83	62,905
200UL	4040	7.0	0.01	62,843
200UE	2120 2T20	7.6	0.76	63,016 ±5
27502	2110	1.4	0.70	62,788
20505	5110	1.4 5.6	0.71	63,343
29501	3700	3.0	0.71	62,842
3150E	3900 3610	5.3	1.04	63,313 ±1
JIJUE	4240	3.0	0.67	62,827

015

.

Page Nine 332083

Station	Resistivity	Chargeability	L/M	Magnetic
3250E	9150	3.2	0.72	
3250E	9030	1.8	1.67	-
2250F	5000			62,804
3350E	5920	3.2	1.09	-
3450E	3660	2.2	1.05	· • •
	4150	7.0	0.92	-
3550E	6420	8,6	0.85	· -
· .				-
LINE 2000N				
••••••••••••••••••••••••••••••••••••••		• · · ·		62,839
2450E	3220	4.0	1.00	-
2550F	2360	3 1	A 00	62,952
LUJUL	LJUV	J.4	0.00	62 974
2650E	2750	7.3	0.82	96,7/4 -
	4590	3.5	1.11	62,933
2750E	3490	4.4	0.82	-
2850F	424U 4490	4.5	1.07	62,982
1000L	0077	5.0	1.10	62.775
2950E	3870	5.4	0.74	
3050F	6700	0.0	0.00	62,762
JUJUE	0700	2.9	0,86	62 702
3150E	3830	6.3	0.78	-
	3750	2.9	1.00	62,839
3250E	6300	2.3	1.09	-
3350F	2220	2 0	0 00	62,816
	2330	2.0	0.90	- 62_800
3450E	2610	3.2	1.09	-
25505	0010	• • • • • • • • • • • • • • • • • • •		62,750
JODUL	2910	5.1	1.04	-
3650E	3320	8.2	0.92	02,/5/
- ·	· · · ·			-
			•	
LINE 2600N				62 752
2450E	5310	4.3	0.88	-
OFFOR	6700			62,789
2550E	3780	5.3	1.04	- 60 771
•		.*		02,114

)

.•

Page Ten

332084

Station	Resistivity	Chargeability	L/M	Magnetic
2650E	6140	2.9	1.21	
2750E	4410	3.7	0.92	62,685
2850E	3310	6.0	1.00	62,662
2950E	4990	4.8	1.00	62,65/
3050E	6090	4.0	1.03	62,709
3150E	5700	3.8	0.89	62,561 -
3250E	6530	3.9	1.02	
3350E	4350	4.3	0.81	-
3450E	4640	4.0	1.00	- -
3550E	2560	4.7	0.94	-
3650E	2420	4.5	0.87	-
3750E	1980	5.0	1.06	-
3850E	1550	6.3	0.92	· · · · ·
				.
LINE 3200N 2450E	4880	4.2	0.86	62,614 62,581
2550E	6170	2.4	1.46	62.548
2650E	4670	4.1	1.22	62,415
2750E	3610	7.5	1.00	62.547
2850E	3430	8.7	0.99	62,760
2950E	5630	4.9	1.10	62,979
3050E	7200	5.5	0.91	62,673
3150E	3820	5.3	0.85	- 62 597
3250E	3880	5.8	1.04	62,617

05

)

}

Page Eleven

332085

Station	Resistivity	Chargeability	L/M	Magnetics
3350E	4540	5.1	0.88	62,629
3450E	2840	5.9	0.81	62,612
3550E	2750	3.4	1.06	62,721
3650E	2540	6.1	0.90	62,759
3750E	2920	6.0	0.92	- 62,735
3850E	1890	8.4	1.05	62,862
3950E	2500	7.8	0.73	62,730
4050E	2880	6.1	0.98	62,760
415UE		• .	-	62,737
425UE		-		62,734

P

D

GRADIENT ARRAY

013

D

CURRENT ELECTRODES ON LINE 4400N AT 750W AND 2250E

> LINES 3800N 4400N 5000N

LUAGE IMETAE

332087

Station -	Resistivity	Chargeability	L/M	Magnetic
LINE 3800N				
50E	8450	8.3	0.94	62,578 -
150E	6660	9.5	1.05	62,668
250E	8440	7.5	1.04	62,686
350E	6010	5.8	0.86	62,859
450F	7540	1.3	0.00	62,644
	1440	4.5	0.77	62,722
SOUL	4440	0.0	0.95	- 62,775
DOUL	3720 3750	6.8 11 5	0.66	- 62 700
750E	3500	11.5	0.92	02,198
· -	3750	11.5	0.74	62.699
850E	3460	11.0	0.91	
950E	3260	11_4	0.97	62,705
10505	4700		• • •	62,668
TUDUE	4520	9.8	1.00	62 600
1150E	5260	9.5	0.95	-
1250E	7050	6.0	0.97	62,731
12505	0400		~ •	62,765
TOOL	9400	5.9	0.93	62.500
1450E	9030	8.4	0.87	
1550E	7780	5.3	1.10	62,522 -
1650E	10090	10090 3.5 1.0	1 00	62,314
				62,833
			· .	
LINE 4400N			,	62 555
50E	7700	6.3	1.03	-
150E	6240	8.3	0.94	62,574
0505	F A A			62,557
250E	5080	9.4	1.01	-
3505	404U	10.3	1.00	62,549
JOUE	5440 6640	10.0	U,95 1 02	- 62 670
		/ · · · .	T 1 0 0	02,0/3

30

).

)

Station	Resistivity	Chargeability	L/M	Magnetics
450E	6930	5.6	0.98	-
550E	5990	6.5	1.00	62,638
650E	5720	6.0	0.97	62,555 -
7505	7100	5.3	0.04	62,759
/ JUL	7100	5.5	0.34	62,752
850E	2810	9.5	0.93	62,722
950E	3020 3940	15.0 12.4	0.80 0.89	62.619
L050E	6080	6.4	1.14	62 453
1150E	8040	6.4	0,99	- -
1250E	14590	6.3	0.95	02,378
1350E	9750	6.9	0.87	62,312 62,116
1450E	4700	7.0	0.97	61,749 -
1550E	3070	8.5	0.98	62,346
1650E	2000	9.0	1.06	62,711 62,796 62,841
· · · ·			·	
LINE 5000N	· · · · ·			
00	4740	10.6	1.18	62,572
50E	4670 4630	12.1 12.0	1.14 1.15	- 62,540
150E	5020 6290	14.0 10.3	1.07 1.07	62,539
250E	5730	7.1	1.20	62.522
350E	7660	6.8	1.18	62 475
450E	9050	5.8	1.26	62,470
550E	7580	6.8	1.22	
650E	6260	8.9	1.21	02,300 ±500
750E	6600	7.0	1.33	64,000 ±100 63,400 ±100 62,177

82

• . .

Page Fourteen

332089

Station	Resistivity	Chargeability	L/M	Magnetics
850E	8400	8.1	1.17	-
950E	11400	7.1	1.20	62,421 - 62,667
1050E	8290	6.5	1.05	62,678
1150E	8620	5.5	1.18	62,605
1250E	8090	6.3	1.16	62,464
1350E	8150	7.5	1.17	62,299
1450E	5140	11.1	1.15	62,170
1550E	2330	10.4	1.20	62,813
TOOUL	3300	8.5	1.12	62,913

)

Station	Resistivity	Chargeability	L/M	Magnetic
LINE 3800N		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1450E	13050	10.3	0.98	62,500 -
1550E	10810	8.8	0.91	62,522
1650E	11650	5.5	0.87	62,314 -
1750E	3040	7.0	1.07	62,833
1850E	2710	9.9	1.01	62,736
1950E	3330	5.0	1.16	62,694
2050E	2910	6.5	1.08	62,765
2150E	3420	7.3	0.89	62,722
2250E	6540	6.1	1.07	62,577 -
2350E	4210	6.8	1.15	62,540 -
2450E	3360	5.0	1.20	62,520 -
2550E	5560	5.5	1.33	62,509 -
2650E	3630	5.9	1.10	62,408
2750E	1830	8.1	1.09 .	62,519
2850E	1790	7.5	0.90	62,507 -
2950E	1740	9.0	1.06	62,861 62,986
3050E	1610	8.8	0.83	62,791
3150E	-		-	62,741
3250E	-	· · · · · · · ·	. –	62,687
3350E	-		-	62,701
3450E	. - .	-	-	62,682
3550E	-	_	-	62,719
3650E		- · · · ·	-	62,701
алар 11				62,651

0²2

 \mathcal{P}

GRADIENT ARRAY

021

CURRENT ELECTRODES ON LINE 4400N AT 750E AND 3750E

> LINES 3800N 4400N 5000N

Page Sixteen 332092

itation	Resistivity	Chargeability	L/M	Magnetic
750F		_	·····	
		-		62,842
850E	• • • • • • • • • • • • • • • • • • •	-	-	- 62 677
950E	-	-	-	-
050E	· _ · _ ·			62,795 -
1505				62,904
	-	•	• •	62,750
250E	-	-	-	- 62 662
350E	-	-	-	02,002
	· · ·			62,671
			•	
INE 4400N				
550F	2600	10 5	0.00	62,346
6500L	2000	10.5	0.90	62,711
.05UE	1760	9.5	1.03	62,796
750E	2600	7.3	1.07	-
.850E	2000	9.1	0.97	62,525
950F	1500	11 4	0.00	62,726
	1390	11.4	0.09	62,590
050E	1650	17.5	0.79	-
150E	2720	7.6	1.10	62,60/
		· · ·		62,641
ZOUL	3990	6.9	0.87	62 555
350E	3780	5.8	0.95	
450E	4050	8.3	0.88	62,677
SEAF	2100		1.04	62,407
JUE	3100	4.8	1.04	- 62.525
650E	2700	4.0	1.40	
750E	1210	6.9	0.87	02,090
2850F	960 1530	11.3	0.91	63,039
	1000	3.1	0.31	- 63,194

82⁵³

Page Seventeen

332093

Station	Resistivity	Chargeability	L/M	Magnetics
2950E	960	10.3	1.00	
3050E	970	8.5	1.00	63,183
3150E	1020	8.1	0.79	63,237
				62,741
LINE 5000N	· .	•		
1400E	3580	11.5	1.09	62,299
1450E	3380	13.0	1.18	- 52 170
1550E	2160	10.8	1.20	02,1/0
1650F	2060	11 0	1 05	62,813
10002	2000	11.0	1.25	62,896
1750E	2510	11.1	1.17	62,769
1850E	3170	7.0	1,20	62,845
10505	0010			62,735
TAPOF	2210	7.4	1.19	62 775
2050E	1570	7.3	1.23	-
2150F	1415	9.3	1.16	62,900
2130L	1000	11.5	1.11	62.866
2250E	2200	8.5	1.15	-
2350E	2620	8.9	1 27	63,136
		0.5	** = /	63,012
2450E	4850	7.1	1.38	-
2550E	4300	5,5	1.33	02,007
26505	3500	6 5	0.00	62,879
20305	3350	0.0	0.89	62.853
2750E	2120	8.3	1.20	-
2850E	1700	8.9	0,90	o2,924 -
20505	1100			63,012
CADOF	1120	11.6	0.86	62,990
3050E	2400	10.0	0.80	-
			•	63,092
· · · ·	•			*

0250

)

GRADIENT ARRAY

027

CURRENT ELECTRODES ON LINE 4400N AT 2250E AND 5250E

۰.

LINES 4400N 5000N

Page Eighteen

332095

Station	Resistivity	Chargeability	L/M	Magnetics
LINE 4400N	· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · · · · · · · · · ·	<u></u>
2950E	1940	7.8	1.03	63,194
3050E	2780	9.6	0 94	63,183
3150F	3380	7.5	0.02	63,237
32505	3750	7.5	0.95	62,741
	3750	4.3	1.05	62,660
335UE	4260	3.3	1.06	- 62,100 ±500
3450E	3420	4.9	1.02	62 200 ±500
3550E	5000	5.8	0.91	02,200 ±500
3650E	6790	6.4	0.94	62,597
3750E	775	12.5 9.5	0.94	62,594
3850E	1230	6.5	1 00	62,674
3950F	3650	0.1	0.02	62,650
	5050	9,1	0.82	62,643
4050E	-	-	an ti <mark>-</mark> an	- 62,630
LINE 5000N				
2950F	2100	ана са се	1 05	63,012
	2190	9.0	1.05	62,990
3020F	5050	9.9	0.94	63,092
3150E	5020	11.5	0.89	63,204
3250E	3190	9.1	0.93	- - -
3350E	4140	5.1	0.88	02,208
3450E	2860	9.0	0.89	62,651
3550E	5910	7.8	0.72	62,664 -
3650E	8150	9 9	0.84	62,726
			U,UT	62,592

028

)

Page Nineteen

332096

Station	Resistivity	Chargeability	L/M	Magnetics
3750E	3070	8.3	0.88	62,698
3850E	8510	6.3	0.68	62,645
3950E	5390	7.5	0.71	62,637
4050E	2510	10.5	0.84	62,669
4150E	2610	9,3	0.79	• • • • •
4250E	1490	7.8	0.72	- -
4350E 4450F	1960	6.7	0.72	······································
4550E	2150	5.5	0.64	• - 11
				· · · · · · · · · · · · · · · · · ·

02,2

)

-

G R A D I E N T A R R A Y

032

CURRENT ELECTRODES ON LINE 6200N AT 750W AND 2250E

LINES 5600N 6200N 6800N

Page Twenty

332098

Station	Resistivity	Chargeability	L/M	Magnetics
LINE 5600N				
50W 50E	1430 2480	18.3 16.3	0.96 0.86	62,451
150E	3140	13.4	0.82	62,295
250E	3880	10.5	0.94	02,30/ - 62,352
350E	4520	9.6	0.87	02,352 - 62,377
450E	5020	7.6	0.96	62,377 -
550E	6670	6.0	1.05	62 399
650E	6060	5.8	1.00	62,622
750E	1470	10.5	1.00	62,965
850E	5320	9.4	1.12	63,199
950E	7830	8.4	1.01	62 877
1050E	7390	10.0	1.05	62 937
1150E	8780	8.4	1.07	63,158,+50
1250E	10500	3.1	0.97	63,055 62,926
1350E	10920	5.8	1.09	62,619
1450E	7120	8.6	0.96	62.813
1550E	5680	7.8	0.97	62.825
1650E	5600	10.9	0.90	62,914
				•
LINE 6200N				
50E	2680	8.3	1.20	62,516
150E	3170 3030	12.0 14.5	0.83 0.86	62,507
250E	2910	12.8	1.00	62,433
	. · ·	·		62,693

63

ļ

)

Page Twenty-One 332099

Station	Resistivity	Chargeability	L/M	Magnetic
350E	3890	9.0	0.89	
450E	4440	11.8	0.87	62,620 -
550E	3560	8.5	1.04	62,594
650E	3710	9.1	0.97	62,663
750E	3060	11.8	1.06	62,733 -
850E	2670	9.5	0.95	62,774
950E	4400	9.4	1.01	62,859 -
1050E	3960	7.8	0.94	62,933 -
1150E	5670	8.3	1.02	62,956 -
1250E	5260	6.9	0.98	62,910
1350E	3680	7.3	1.00	62,824
1450E	6430	3.8	1 00	62,731
1550E	6190	7.8	1.00	62,648
1650F	3220	10.5	1.00	63,022
	JEL J	10.5	1,00	63,087
LINE 6800N				60 ECT -
50E	2550	11.3	0.96	
150E	3700	14.5	0.86	02,559
250E	2900	10.8 8.5	0.93 0.88	62,548
350E	5150	7.5	0.80	62,534
450E	5790	8.3	0.90	62,515
550E	5820	9.0	0.89	62,497
650E	5320	13.6	0.88	62,515
		· .		62,531

032

)

Page Twenty-Two

Station	Resistivity	Chargeability	L/M	Magnetics
750E	5380	11.1	0.99	60 540
850E	5110	10.3	1.00	62,549
950E	4390	10.5	1.09	02,020
1050E	3880	10.5	1.09	62,/90
1150E	3920	9.0	1.11	02,844 ·
1250E	3130	7.1	1.06	02,702 -
1350E	2890	8.2	1.04	02,740 - 52,710
1450E	4480	8.5	1.00	02,/10 -
1550E	4130	7.8	0.90	
1650E	4680	4.6	0.87	62,513

034

CURRENT ELECTRODES ON LINE 6200N AT 750E AND 3750E

> LINES 5600N 6200N 6800N

Page Twenty-Three

332102

Station	Resistivity	Chargeability	L/M	Magnetics
LINE 5600N	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	····	
1450E	5150	8.0	0.63	62,619
1550E	3800	9.3	0.70	62,813 -
1650E	5070	8.5	0.76	62,825
1750E	3990	8,9	0.84	62,914
1850E	2950	12.6	0.74	63,121
1950E	2550 3375	11.9 11.5	0.76 0.70	62,895 -
2050E	4330 4720	7.8 6.1	0.68 0.54	62,864
2150E	2760	6.5	0.58	63,052
2250E	4970	5.3	0.57	62,902
2350E	4950 3480	4.4 12.8	0.57 0.55	63,167
2450E	4320	8.5	0.76	63,107
2550E	2990	5.4	0.70	63,004
2650E	2490	3.6	0.50	63,330
2750E	2680 2340	7.0 10.5	0.79 0.72	63,333
2850E	2920 3620	7.8 6.0	0.68 0.63	63,374
2950E	4700	5.9	0.64	63,721
3050E	3990	5.3	0.72	62,990
				62,902
· · · · · · · · · · · · · · · · · · ·			• .	
LINE 6200N				62,731
1450E	5800	5.5	0.87	- 62,648
1550E	5730	6.6	1.06	63,022
1650E	5290	9.3	1.02	63,087
1750E	4670	7.4	1.05	- 63,159
••••••••••••••••••••••••••••••••••••••	ананананананананананананананананананан	· · · · · · · · · · · · · · · · · · ·	•• •••••• • • • • • • • • •	•••••

5°

)

LUGE INCILLY FULL

332103

Station	Resistivity	Chargeability	L/M	Magnetics
1850E	3340	8.8	0.91	-
1950E	2990	8.0	0.91	- 03*083
2050E	2740	8.1	0.84	63,037
2150E	2270	8.0	0.98	63,148
2250E	1980	9.3	1.02	63,249 -
2350E 2450E	3480 - 4310 5800	8.5 6.3 3.5	0.96 1.03 1.09	63,294
2550E	4620	3.9	1.03	03,039 - 63,513
2650E	2220	4.5	1.07	63,274
2750E	2610	3.9	0.90	62 057
2850E	2880	3.0	1.00	62 981
2950E	3130	6.4	0.91	
3050E	2930	3.0	1.10	62,954 - 63,437
			• . :	
LINE 6800N				
1450E	4700	11.3	0.93	62,718
1550E	5720	9.5	0.95	62,676
1650E	7020	6.6	0.95	62,612
1750E	8040	6.9	1.06	62,513
1850E	8200	7.0	1.04	62,349
1950E	5910	8.5	0.98	62,845 -
2050E	2460	8.0	0.91	03,325
2150E	2110	10.3	0.97	62,962 63,010 63,193

036

.

1

Station	Resistivity	Chargeability	L/M	Magnetics
2250E	1840	13.3	0.89	63,223
	2820	9.0	1.00	63,335
2350E	3760	7.8	1.06	63,158
2450E	3300	7.6	1.03	63,499
				63,714
2550E	5200	4.3	0.88	63,460
				63,100
2650E	3920	4.3	88.0	- -
2750F	3220	39	0.69	02,900
27002	ULLU	0.5	0100	62,889
2850E	3130	4.5	1.00	-
				62,878
2950E	2330	4.1	0.93	-
30505	2220	5 1	1 09	62,916
JUDUE	2230	5.1	1.00	62,926
3150E	3720	6.1	0.95	-
	• • •	- • -		62,938

୍ଦିର୍

۰.

GRADIENT ARRAY

38

 \square

CURRENT ELECTRODES ON LINE 6200N AT 2250E AND 5250E

LINES 5600N 6200N 6800N

Station	Resistivity	Chargeability	L/M	Magnetics
LINE 5600N				
2850F	4920	0 1	0.70	63,374
20002	4520	0.1	0.78	63,721
2950E	5870	6.6	0.88	
3050E	4850	6.4	0.86	62,990
31505	4870	6.9	0.87	62,902
SIJOL	3720	8.1	0.90	62,902
3250E	3040	9,6	0.81	-
3350E	4460	8.1	0.74	63,229
				63,120
3450E	5550	9.0	0.83	62 072
3550E	2730	9,5	0.79	-
36505	2200	10 0	0.70	63,105
5050E	2200	12.0	0.78	63.044
3750E	5200 ·	12.0	0.79	
3850E	7950	8.4	0.71	62,713
20505	2000			62,571
2320E	3900	10.5	0.71	- 62 579
4050E	4500	10,9	0.81	-
4150E	5650	8.5	0 71	62,592
40505				62,571
425UE	2800	8.4	0.77	- 62 509
4350E	3880	6.1	0.74	62,603
4450F	3050	8 5	0 60	62,647
	5050	0.5	0.00	62,663
4550E	2560	11.3	0.71	£2 COD
4650E	3120	8.6	0.68	62,68U -
		· · · · · · · ·		62,791
	· ·	•		
LINE 6200N	· · ·			· · · · · · · · · · · · · · · · · · ·
28505	2200		1 04	63,057
LOJVE	2330	4.8	1.04	62 .981
2950E	3300	6.0	0.92	
· .			÷	62,954

ઽ૾ૺ
ŧ

Station	Resistivity	Chargeability	L/M	Magnetics
3050E	2980	3.4	0.88	-
3150E	1860	8.0	0.88	63,437 63,394
3250E	2380	10.0	0.85	63,321 -
3350E	3450	10.0	0.88	62,703
3450E	2210	9.6	0.97	63,205
3550E	3020	8.3	0.90	63 033
3650E	4700	10.9	0.90	62 790
3750E	3030 •	11.4	0.88	62,773
3850E	4400	9.0	0.78	62,623
3950E	4660	8.4	0.89	62,619
4050E 4050E	2980 - 3390	9.1 2.2	0.80	-
4150E	3090	8.9	0.68	62,616
4250E	3140	5.9	0.73	62,612
4350E	1730	7.1	0.75	62,615
4450E	3210	7.3	0.73	62,620
4550E	1895	11.0	0.71	62,607
				01,010
LINE 6800N				
2850E	2730	5.0	1.00	62,889
2950E	2260	4.0	0.95	62,878 -
3050E	2160	4.5	0.88	62,916
3150E	3590	6.6	0.80	62,926
3250E	3180	5.1	1.06	62,938 62,931 62,936
· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	······································	••••••••••••••••••••••••••••••••••••••

Page Twenty-Eight

332108

3350E 3330 4.0 0.83 63, 3450E 2910 10.6 0.88 63, 3550E 3630 10.3 0.90 63, 3550E 3630 11.1 0.93 63, 3650E 3760 9.1 0.91 63, 3750E 3340 6.3 0.92 63, 3850E 2840 6.9 0.72 63, 3950E 2790 8.9 0.82 63, 4050E 4360 7.0 0.83 62, 4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	netics
2100 8.6 0.85 63, 3450E 2910 10.6 0.88 63, 3550E 3630 11.1 0.93 63, 3650E 3760 9.1 0.91 63, 3750E 3340 6.3 0.92 63, 3750E 3340 6.3 0.92 63, 3850E 2840 6.9 0.72 63, 3950E 2790 8.9 0.82 63, 4050E 4360 7.0 0.83 62, 4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	
3450E 2910 10.6 0.88 0.3 3550E 3630 11.1 0.93 63, 3550E 3750E 3760 9.1 0.91 63, 3750E 3340 6.3 0.92 63, 3850E 2840 6.9 0.72 63, 3850E 2840 6.9 0.72 63, 3950E 2790 8.9 0.82 63, 4050E 4360 7.0 0.83 62, 4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	291
3850 10.3 0.90 63, 3550E 3630 11.1 0.93 63, 3650E 3760 9.1 0.91 63, 3750E 3340 6.3 0.92 63, 3850E 2840 6.9 0.72 63, 3850E 2840 6.9 0.72 63, 3950E 2790 8.9 0.82 63, 4050E 4360 7.0 0.83 62, 4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	-
3550E 3630 11.1 0.93 63, 3650E 3760 9.1 0.91 63, 3750E 3340 6.3 0.92 63, 3850E 2840 6.9 0.72 63, 3950E 2840 6.9 0.72 63, 3950E 2840 6.9 0.72 63, 3950E 2790 8.9 0.82 63, 4050E 4360 7.0 0.83 62, 4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	262
36501 3050 11.1 0.33 63, 36502 3760 9.1 0.91 63, 37502 3340 6.3 0.92 63, 38502 2840 6.9 0.72 63, 39505 2840 6.9 0.72 63, 39505 2790 8.9 0.82 63, 40505 4360 7.0 0.83 62, 40505 1590 11.4 0.79 62, 42505 3520 9.7 0.86 62, 43505 3150 7.3 0.96 62, 44505 3320 6.5 0.83 62, 45505 3440 6.6 0.68 62,	253
3650E 3760 9.1 0.91 63, 3750E 3340 6.3 0.92 63, 3850E 2840 6.9 0.72 63, 3950E 2790 8.9 0.82 63, 4050E 4360 7.0 0.83 62, 4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	280
3750E 3340 6.3 0.92 63, 3850E 2840 6.9 0.72 63, 3950E 2790 8.9 0.82 63, 4050E 4360 7.0 0.83 62, 4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	250
3750E 3340 - 6.3 0.92 63, 3850E 2840 6.9 0.72 63, 3950E 2790 8.9 0.82 63, 4050E 4360 7.0 0.83 62, 4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	155 166
3750L 3540 6.3 6.3 63, 3850E 2840 6.9 0.72 63, 3950E 2790 8.9 0.82 63, 4050E 4360 7.0 0.83 62, 4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	-00
3850E 2840 6.9 0.72 63, 3950E 2790 8.9 0.82 63, 4050E 4360 7.0 0.83 62, 4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	435
3950E 2790 8.9 0.82 63, 4050E 4360 7.0 0.83 62, 4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	-
3950E 2790 8.9 0.82 63, 4050E 4360 7.0 0.83 62, 4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	205
33301 2790 0.3 0.82 63, 4050E 4360 7.0 0.83 62, 4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	233
4050E 4360 7.0 0.83 62, 4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	280
40001 4000 710 0100 62, 4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	-
4150E 1590 11.4 0.79 62, 4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	815
4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	-
4250E 3520 9.7 0.86 62, 4350E 3150 7.3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	648
4350E 3150 7,3 0.96 62, 4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	-
4350E 3150 7.3 0.96 4450E 3320 6.5 0.83 4550E 3440 6.6 0.68 62, 62, 62,	638
4450E 3320 6.5 0.83 62, 4450E 3320 6.6 0.68 62, 4550E 3440 6.6 0.68 62,	_
4450E 3320 6.5 0.83 62, 4550E 3440 6.6 0.68 62,	618
4550E 3440 6.6 0.68 62,	-
4550E 3440 6.6 0.68 62,	606
	626
	• • • • •

OA

.

)

GRADIENT. ARRAY

042

Ð

P

CURRENT ELECTRODES ON LINE 6200N AT 3750E AND 6750E

> LINES 5600N 6200N 6800N

> > 1.12

raye iwenty-nine

332110

Station	Resistivity	Chargeability	L/M	Magnetics
LINE 5600N	· · · · · · · · · · · · · · · · · · ·			
	2400	10.0		62,647
4450E	3400	10.9	0,.87	- 62 663
4550E	4270	10.6	0.90	-
	3420	10.0	0.88	62,680
465UE	4390	0.5	0.85	- 62 701
4750E	6300	5,6	0.95	- 02,751
40505	2250	c o		62,687
4850E	3350	0.8	0.85	- 62 675
4950E	3010	4.1	0.93	-
20204		· · · · ·		62,678
5050E	2610	4.5	0.84	- 62 670
5150E	2360	5.3	0.75	02,079
				62,691
5250E	3090	6.1	0.79	. - .
			1 	-
		•		
1 TNE 6200N				
				62.615
4350E	1610	6.9	0.87	
44505	3150			62,620
44502	3150 2590	/.1 93	0.92	- 62 607
4550E	2010	11.6	0.86	-
ACTOT				62,613
405UE	3140	9.3	0.81	62 622
4750E	3980	3.9	0.72	02,000
	2500	7.4	0.78	62,657
4850E	1920	8.3	0.78	60 700
4950E	2140	3.7	0.89	02,738
				62,746
5050E	1790	5.3	0.72	
5150F	1570	7 3	0.82	, 62,699
~~~~~ U	7010		V.UL	62,729
5250E	2070	3.9	0.72	-
5350F	3/00	3.0	0 77	62,780
JJJJJE	<b>J40V</b>	3.0	0.//	62 732

043

______

# Page Thirty

Station	Resistivity	Chargeability	L/M	Magnetic
LINE 6800N				
				62,638
4350E	3650	9.8	0.90	62 610
4450F	4850	7.2	0.94	02,010
44002	-1050	7 • L		62,606
4550E	5700	6.2	0.71	
•	3780	9.0	0.98	62,626
4650E	3320	11.2	0.74	-
47505	2820	8.8	0,85	62,629
4/5UL	2820	8.9	0.83	62 621
4850F	3950	6.0	0.80	02,021
	0500		0,00	62.656
4950E	3250	6.4	0.91	-
		· · · · · · · · · · · · · · · · · · ·		62,695
5050E	3040	5.3	0.77	-
51505	2760		0 07	02,091
SISUE	2/00	0.1	0.97	62 602
5250E	4120	4.8	0.81	02,0 <i>32</i>
			0101	62,708
5350E	2610	8,6	0.93	-
				62,757
5450E	2670	9.9	0.84	60 04C
55505	16/0	6 /	0 70	02,840
JUDUE	1040	0.4	0.70	62,768
5650E	<b>—</b> .		_	-
· · ·	. •	•	· · .	62,727
5750E	<b>-</b> .	-		
· ·			•	62,714

#### GRADIENT ARRAY

0AS

CURRENT ELECTRODES ON LINE 8000N AT 750W AND 2250E

> LINES 7400N 8000N 8600N

### Page Thirty-One

332113

Station	Resistivity	Chargeability	L/M	Magnetic
LINE 7400N			· · · · · ·	
50E	1970	11.4	0.95	62,537
150E	2122	10.3	0.90	62,540
250E	1610	10.3	0.69	62,537
350E	1875	11.9	0.87	62,534 -
450E	1409	9.8	1.02	62,536
550E	2289	11.1	0.84	62,567 -
650E	3376	9.0	0.92	62,546
750E	2731	11.1	0.88	62,537
850E	2946	13.3	0.86	62,542
950E	4818 -	9.9	0.96	62,539
1050E	3012	12.3	0.89	62,525
1150E	3199	13.5	0.81	62,516
1250E	3427	14.1	1.09	62,494 -
1350E	4019	8.3	0.90	62,487 -
1450E	4626	6.8	0.96	62,470
1550E	7711	5.5	0.73	62,444
1650E	7237	3.2	0.78	62,375
				62,515
·····				
LINE 8000N				62-611
50W 50E	1160 1510	12.3 11.5	0.81 0.91	-
150E	2130	8.5	0.86	62,610
250E	1400	9.1	0.86	62,608
			0100	62,598

OAG

rage inircy-iwo

332114

Station	Resistivity	Chargeability	L/M	Magnetics
350E	1960	7.6	0.79	-
450E	1580	12.5	0.82	62,599 -
550E	1640	12.3	0.81	62,595 -
650E	1520 -	11.3	0.84	62,592 -
750E	1380	15.1	0.83	62,604
850E	2100	12.9	0.84	-
950E	3420	9.5	0.84	62,588
1050	2460	11.6	0.04	62,586
10005	1700	11.0	0.00	62,592
1150E	1720	11.5	0.90	62.594
1250E	2350	11.3	0.93	62,588
1350E	2400	8.9	0.82	62,574 62,565
1450E	3290	5.8	0.83	62,544 62,526
1550E	7490	4.5	0.78	62,510 -
1650E	2080	10.6	1.12	62,480 62,410
				62,408
LINE 8600N				
50E	2865	14.5	0.83	62,639 -
150E	1881	14 5	0.79	62,637
2505	2205	19.0	0.73	62,639
2505	6033	. 12.0	U.8/	62,633
35UE	3144	9.4	0.88	62.626
450E	2896	9.6	0.78	62 625
550E	1807	11.9	0.91	-
650E	1535	18.4	0.76	62,618 -
		•		62,613
· · · · · · · · · · · · · · · · · · ·				

on'

### Page Thirty-Three

332115

Station	Resistivity	Chargeability	L/M	Magnetics
750E	1924	17.6	0.84	-
				62,603
850E	2087	16.1	0.87	-
850E	2150	16.3	0.77	-
			19. 19.	62,598
950E	2410	14.5	0.86	-
			•	62,594
1050E	2950	12.4	0.89	-
				62.586
1150E	3250	13.6	0.92	-
				62.574
1250E	4150	15.5	0.87	
			••••	62.586
1350F	2700	15.0	0.89	,
		2010		62,603
1450E	2450	10.6	0.80	-
TIOT	3430	8.8	0.74	62 602
1550F	5640	5.0	0.04	02,002
1000	0000	3.0	0.00	62 F60
16505	2100		0.00	02,000
10305	2100	5.5	0.82	-
				02,55i

640

)

I,

D

#### GRADIENT ARRAY

043

5

CURRENT ELECTRODES ON LINE 8000N AT 750E AND 3750E

> LINES 7400N 8000N 8600N

Page Infrty-Four

332117

Station	Resistivity	Chargeability	L/M	Magnetics
LINE 7400N		<u> </u>		
1450E	3222	13.1	0.79	62,470
1550E	5432	9.9	0.99	62,444
1650E	5852	7.3	0.89	62,375
1750E	3285	11.1	0.99	62,515
1850F	1721	9.9	0.00	62,499
10505	1059	9.0	0.97	62,935
19505	1950	9.5	0.88	63,038
ZUSUE	2453	10.5	0.87	62,964
2150E	2873	11.8	0.96	63 458
2250E	1991	10.8	0.91	63,587
2350E	4150 -	5.2	1.02 -	03,540 -
2450E	3828	5.3	0.91	63,104
2550E	3715	5.0	0.76	62,931
2650E	3505	6.3	0.68	62,869
2750E	3900	6.5	0.85	62,835
2850F	2968	5 5	0.00	62,814
2950F	3621	7.0	0.90	62,807
20505	3021 4525	7.9	0.00	62,816
JUDUE	4535	8.9	0.84	62,832
LINE 8000N				
1450E	2847	11.8	0.87	62,544 62,526
1550E	7704	11 7	0.77	62,510
16505	2240	16 0	0.05	62,480
TODUE	2340	<b>70.</b> A	0.85	62,410 62,408
···· ···· · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	·····		· · · · · · · · · · · · · · ·

650

)

## Page Thirty-Five

332118

Station	Resistivity	Chargeability	L/M	Magnetics
1750E	1702	14.1	0.99	<u> </u>
1850E	2145	10.8	0.93	62,944
1950E	3040	7.5	0.93	62,966
2050E	3248 /	8.0	0.85	62,872 -
2150E	1950	8.6	0.94	62,807
2250E	1978	10.8	0.91	62,767
2350E	3109	6.8	0.88	62,960
2450E	2436	6.6	0.83	62,897 -
2550E	2622	6.3	0.84	63,087 -
2650E	2249	7.3	1.01	62,997 -
2750E	3141	7.3	0.82	62,925
2850E	2340	9.0	0.79	62,832
2950E	1641	6.6	0.83	62,801
3050E	1253	5.8	0.78	62,791
	2200			62,783
			· .	
LINE 8600N				60 600
1450E	3356	15.0	0.93	02,003 -
1550E	4365	13.3	0,85	62,592
1650E	5225	13.2	0.82	62,560 -
1750E	2025	10.8	0.91	62,551
1850E	1972	10.9	0.83	62,580 -
1950E	2259	9.0	0,98	62,608
2050E	5220	8.8	0.85	62,659 62,798
· · · · · · · · · · · · · · · · ·		···· ···· · · · · · · · · · · · · · ·	• • • • • • • • • • •	

Š)

7

Station	Resistivity	Chargeability	L/M	Magnetics
2150E	3458	7.4	1.01	62,824
2250E	2286	9.8	0.85	62,959
2350E	3458	8.0	0.83	62,740
2450E	2153	6.8	0.74	62,716
2550E	3012	5.4	0.80	62,717
2650E	2928	7.5	0.67	62,719
2/5UL	2/50	5.8	0.95	62,731
2000E	2134	<i>1.3</i> 6.3	0.87	62,731
3050E	4624	8.0	0.88	62,713
		0.0	0.00	62,709

____

632

)

D

#### **GRADIENT** ARRAY

653

CURRENT ELECTRODES ON LINE 8000N AT 2250E AND 5250E

> LINES 7400N 8000N 8600N

Page Thirty-Seven

3	3	2	1	2	1
~	-		_		_

Station	Resistivity	Chargeability	L/M	Magnetic
LINE 7400N			<u> </u>	
20505	2204	5.0	1.00	.62,814
28506	2394	5.0	1,00	62 807
2950E	2551	5.2	1.06	-
3050E	3153	8.4	0.89	62,816
01 FOF			0.05	62,832
3150E	1881	7.6	0.96	62 042
3250E	2784	7.6	0.96	-
3350F	3405	5 6	0.06	62,900
JUJVL	3455	0,C	U.00 0 0E	- 62 000
3450F	3230	ን. <del>ኅ</del> 10 0	0.00	02,999
- 1002	2070	0 E TO'O	0.30	- 62 007
3550F	2760	2.0	0.95	53,007
3330E	3708	7.2	0.81	- 62 010
3650E	3657	12 9	0.96	02,919
- VVVL	5557	12.0	0.00	62 010
3750E	3430	3 1	0 74	02,040
		J.T.	0./4	62 702
3850E	3541	5.8	0 52	02,133
		<b>V</b> • <b>V</b>	J.JL	62 747
3950E	3670	6.1	0.84	
				62,723
4050E	2730	10.0	0.80	
· · ·				62.811
4150E	3585	11.0	0.77	-
•				62,698
4250E	4500	11.1	0.77	-
12505	0507	<b>.</b>		62,746
435UE	3527	9.1	0.66	-
4150E	6194	11 A .	0 70	62,741
THOUL	0104	11.4	0./9	£0 COO
4550F	4600	10.4	0 72	02,022
	7033	TO*4	U./2	62 616
4650E	7035	9 1	0.82	02,010
		~ • •		62.576
·				
LINE 8000N				
	•			62,832
2850E	2190	8.4	0.87	
				62,801

-05h

### Page Thirty-Eight

332122

Station	Resistivity	Chargeability	L/M	Magnetic
2950E	1993	5.5	0.96	-
3050E	1926	5.0	0.86	62,791
3150E	2253	5.5	0.82	62,783
3250E	2256 3243	8.0 10.4	n 91	62,794
3350F	3220	0.0	0.72	62,824
3450r	5223	0.0	0.72	62,812
3450E	5067	9.5	0.87	62,806
3550E	3654	8.3	0.76	62 807
3650E	2827	8.5	0.80	-
3750E	5017	8.5	0.88	02,802
3850E	4523	9.5	0.82	62,808
3950E-	3248	8.5	0.76	62,811
3950E	3300	8.3	0.84	-
4050E	3450	9.5	0.82	62,804 -
4150E	1880	5.8	1.00	62,790 -
4250E	1650	8.8	0.94	62,782
4350F	2030	9 1	0.82	62,778
A450E	2410	10.0	0.02	62,784
	2410	12.2	0.83	62,801
4550E	2460	13.6	0.91	62.828
4650E	1410	12.4	0.81	62 867
				02,007
LINE SOUUN				62,731
2850E	3151	9.8	1.00	- 62.731
2950E	2380	9.1	0.99	- -
3050E	3104	11.3	1.00	02,/13
11 - A	· .			62,709

5

)

rage inircy-mine

332123

Station	Resistivity	Chargeability	L/M	Magnetic
3150E	4041	12.4	1.01	-
3250E	2475	5.1	0.84	62,704 -
3350E	3155	9.0	0.78	62,709
3450E	3313	9.9	1.01	62,720 - 62,713
3550E	5046	10.8	0.83	02,713 - 52 702
3650E	5320	7.1	0.85	62 605
3750E	4663	5.9	0.53	62 60A
3850E	3884	5.0	0.96	62,094 - 62,600
3950E	1357	12.0	0.80	-
4050E	1606	14.0 20.0	0.86	62,705 -
4150E	2450 3059	18.5 10.9	0.88 0.96	62,706
4250E	2610	6.3	0.96	- 62 727
4350E	2675 3350	8.8 15 3	0.94	62.772
4450E	4397 2976	18.9	0.97	62,772 -
4550E	2112	17.1	0.95	62 862
4650E	1378	17.9	0.89	62,002 - 62,896
	·	н 1917 - С. А. 1917 - С. А.		02,030

50

 $\mathcal{I}$ 

#### GRADIENT ARRAY

కో

)

#### CURRENT ELECTRODES ON LINE 8000N AT 3750E AND 6750E

LINES 7400N 8000N 8600N

rage rorty

332125

Station	Resistivity	Chargeability	L/M	Magnetic
LINE 7400N				
AAEOF	1400			62,741
443UE	4406	12.6	0.90	- 
4550E	3582	9.0	1.03	
4650F	3320	10.0	<b>A</b> AA	62,616
40000	3005	12.8	0.88	- 62 576
4750E	2337	11.4	0.86	02,570
1950r	2000	· · · ·		62,744
400UE	3695	11.1	0.99	-
4950E	2491	11.8	0.87	02,/12
<b>For</b> -			0.07	62,745
5050E	2048	14.0	0.93	-
DUDUE	2013	12.5	1.06	- 62 EEO
5150E	4051	11.6	0.84	02,558
5150E	4218	8.8	0.72	· 🗕
52505	0500			62,707
5250E	2536	16.2	0.96	-
5350E	2166	11.5	0.79	02,122
<b>.</b>			01/0	62,716
5450E	2069	7.4	0.99	-
5550F	1936	9 8	0.95	62,/14
	1500	<b>J</b> ,0	0.95	62,708
5650E	1434	9.3	0.89	
6750r	1061	7 4	0.05	62,707
57.50E	1116	/.4 13 A	0.95	- 62 700
5850E	1881	24 3	0.92	02,700
	2886	18.0	0.75	62 709
5950E	3603	9.3	0.84	-
	[,]			62,716
6050E	3324	5.9	0.90	
•	• •			62,/4/
	· · · · · · · · · · · · · · · · · · ·			
LINE 8000N			•	
A450F	2270		<b>A A</b> A	62,784
77JUL	23/9	10.0	0.88	- 62 901
4550E	2904	10.5	0.89	
				62.828

క్రహి

)

and a second second

rage rorty-une

332126

Station	Resistivity	Chargeability	L/M	Magnetics
4650E	2229	10.6	0.83	-
4750E	1889	11.1	0.81	62,867
4850E	2743	13.0	1.02	62,919 -
4950E	2321	13.1	0.92	62,778
5050E	1957	11.4	0.90	62,713
5150E	3135	9.6	0.94	62,694
5250E	2672	12.1	0.93	62,875 -
5350E	3786	10.1	0.99	62,777
5450E	5510	15.3	0.75	62,652
5550E	2402	9.9	0.89	62,654
5650E	1483	9.9	0,84	62,672
5750E	1335	10.3	0.87	62,683 -
5850E	1170	12.0	0.82	62,687
5950E	917	15.0	0.97	62,691
6050E	769	16.3	0.77	62,691
6150E	704	15.4	0.83	62,689 62,678
			 	•
LINE BOUN				62,772
4450E	3580	13.3	0.81	62 <b>,</b> 856
4550E	2744	12.1	0.85	62.862
4650E	2929	12.8	0.84	62.896
4750E	3375	11.1	0.88	63.003
4850E	2970	10.3	0.85	62,868

200

)

Ľ.

rage runty-INO

Station	Resistivity	Chargeability	L/M	Magnetics
4950E	3388	10.1	0.94	
	0706			62,786
5050E	2/96	11.0	0.80	- 60 767
5150E	2679	10.5	0.86	02,707
	2814	10.1	0.82	62,757
5250E	2940	15.4	0.81	-
				62,733
5350E	3990	11.8	0.83	- '
	2720	14 0	0.04	62,682
3450E	5729	14.0	0.04	62 696
5550E	3586	11.4	0.88	02,000
<b></b>			0,00	62,647
5650E	4097	12.0	0.86	-
<b></b>		- <b>i</b> -		62,667
5750E	2121	14.8	0.76	-
FREAT	1200	14.0	0.05	62,6/2
SOUL	1299	14+0	0.00	62 669
5950E	1330	14.0	0.88	-
				62,664
6050E	2301	12.3	0.92	-
-	4000	· · · · · · · · · · · · · · · · · · ·		62,656
OTPOF	4920	10.0	0.88	 62 705
		•		02,705

#### $:= G \stackrel{\cdot}{,} R \stackrel{\cdot}{,} A \stackrel{\cdot}{,} D \stackrel{\cdot}{,} I \stackrel{\cdot}{,} E \stackrel{\cdot}{,} N \stackrel{\cdot}{,} T \stackrel{\cdot}{,} \dots \stackrel{\cdot}{,} A \stackrel{\cdot}{,} R \stackrel{\cdot}{,} R \stackrel{\cdot}{,} A \stackrel{\cdot}{,} Y$

#### CURRENT ELECTRODES ON LINE 8000N AT 5250E AND 8250E

LINES 7400N 8000N 8600N

raye rorty-inree

Station	Resistivity	Chargeability	L/M	Magnetics
LINE 7400N		· · · ·	•	
	000	21 1	0.01	62,708
DODUE	900 1446	18.0	0.81	62.709
5950E	1828	8.8	0,94	-
	1740	0.1		62,716
DUSUE	1/40	9.1	0.97	62 747
5150E	1881	7.0	0.93	
				62,707
5250E	2169	10.3	0.90	-
5350F	2151	8 9	1 01	62,778
0000	2151	0.5	1.01	62,743
6450E	2151	9.3	0.89	-
CEE0E	0240	0.1	0.00	62,768
000UE	2349	<b>A</b> *T	88.0	62 837
6650E	2736	8.0	0.88	-
				62,797
6750E	2536	6.0	0.92	-
6850F	2508	4.8	0.83	62,802
VUVL	2000	4.0	0.00	62,836
6950E	2349	6.5	0.92	-
70505	2420	6.2	0.94	<b>-</b>
7050E	2420	0.3	0.64	-
7150E	2766	7.9	0.89	_
•				· · · · ·
				•
			•	
LINE 8000N	. ·		. · ·	
			· .	62,687
5850E	1886	6,1	1.03	-
59505	1336	6 1	0.08	02,091
JJJUE	1000	<b>V</b> • <b>A</b>	0.50	62.691
6050E	1192	4.1	1.05	-
63 F0F			<b>A CA</b>	62,689
DIDUE	133/	2.8	U.68 0 02	- 62 670
6250F	1335	15.0	0.92	-
	1118	12.9	0.85	62.720
6350E	1260	11.1	0.90	
490. 				62,733

### Page Forty-Four

332130

Station	Resistivity	Chargeability	L/M	Magnetics
6450E	1660	10.6	0.07	
04502	1773	10.6	0.97	- 62 762
6550E	1740	15.1	0.93	02,702
· · ·	1738	12,5	0.94	62,736
6650E	1363	11.0	0.94	-
Caroo				62,732
6/50E	2304	10.8	0.95	-
68505			. ·	62,734
0030E	-		-	62 7EA
6950E	-		-	02,754
				62,802
				,
· .				
I THE OCOON		, · · ·		
LINE BOUUN			•	62 672
5850E	1008	9.0	1.06	02,072
		<b></b>	1.00	62.669
5950E	1151	8.8	1.06	-
				62,664
6050E	1621	8.5	0.92	. 🕳
61E0E	13/8	12.1	0.91	62,656
01005	1205	10.0	0.91	62 70F
6250F	916	20 5	0.83	02,705
02002	1690	13.9	0.86	62 746
6350E	2305	14.6	0.86	-
				62,662
6450E	1936	14.6	0.88	· · · ·
SEENE	0405	44 4		62,678
OSSUE	2405	11.1	0.93	60 700
6650F	1881	10.6	0 00	02,720
00002	1001	10.0	0.99	62 672
6750E	3228	9.9	0.91	-
		· · · · · ·		62,685
6850E	3135	10.3	0.97	-
	5. S.		•	· _

063

)

D

#### GRADIENT ARRAY

0504

6

CURRENT ELECTRODES ON LINE 9800N AT 750W AND 2250E

> LINES 9200N 9800N 10400N

### Page Forty-Five

332132

Station	Resistivity	Chargeability	L/M	Magneti
LINE 9200N				
50E	1497	16.0	0 94	62,630
1505	005	14.0	0.04	62,627
TOOE	903	14.0	0.99	62,623
250E	1077	14.3	0.90	62,618
350E	1485	15.5	0.81	
450E	2259	17.8	0.87	-
550E	2237	16.3	0.85	62,617
650F	2337	15 1	0.00	62,614
7505	2007	15.1	0.05	62,618
/ 50E	2018	16.0	0.86	62,615
850E	1653	18.4	0.82	62 510
950E	1958	16.5	0.82	
1050E	1936	17.4	0.80	62,620
L150E	2151	14.7	0.79	62,613
12505	1077	12 0	0.05	62,603
	1377	13.0	0.95	62,609
L350E	1344 1249	12.3 15.3	0.85	62,603
1450E	1122	20.3	0.78	-
550E	1156 1343	17.5 16.8	0.85	62,594
6505	2276	12.0	0.00	62,584
LODUE	2370	13.0	0.91	62,586
1				
INE 9800N				
505	1004	0.5	0.00	62,645
JUE	1204	A.0	0.80	62,641
150E	1254	11.3	0.88	62-640
250E	1270	9.6	0.92	-
				02,643

550

D

Page Forty-Six

Station	Resistivity	Chargeability	L/M	Magneti
350E	964	11.5	0.96	-
450E	1588	14.6	0.88	62,639
550E	2219	15.8	0.87	62,635
650E	1772	13.6	0.88	62,632
750E	1889	18.3	0.81	62,63/
850E	2181	15.7	0.76	62,634
950E	1479	16.5	0.93	62,635
050E	1710	17.9	0.84	02,034
150E	4641	16.5	0.91	62,63/ -
250E	1433	16.9	0.96	02,020
350E	1086 995	16.4 16.8	0.79	62,020
.450E	619 310	26.0	0.71	02,021 -
1550E	494	17.8	0.79	02,015
.650E	3220	11.5	0.94	62,009
				02,092
INE 10400N			· · ·	••
50E	1206	12.3	0.77	62,691
150E	1433	12.3	0.80	62,693
250E	1350	12.3	0.88	62,688
350E	1058	10.9	0.94	62,686
450E	1112	11.8	1.00	62,683 -
550E	1454	11.3	0.96	62,677
650E	1824	13.5	0.93	62,666 -
750E	1672	13.6	1.03	62,662
		e e terre e ter		62,660

Station	Resistivity	Chargeability	L/M	Magnetics
850E	1064	15.3	0.90	
950E	2237	17.1	0.80	62,639
1050E	3335	16.4	0.87	62,636
1150E	1741	17.9	0.81	62,636
1250E	996	19.1	0.97	62,637
1350E	1164	17.3	0.92	62,624
1450E	831	22.3	0.96	62,618
1550E	921	19.3	0.92	62,619
165UE	3000	17.9	0./5	62,602

C C C C C C C C

.

5

P

#### GRADIENT ARRAY

68

-

1 1

#### CURRENT ELECTRODES ON LINE 9800N AT 750E AND 3750E

LINES 9200N 9800N 10400N

Page Forty-Eight

332136

Station	Resistivity	Chargeability	L/M	Magnetic
LINE 9200N				
	• •			62,603
1450E	1458	23.1	0.68	
1550F	1539	21 6	0 67	62,594
1000	1990	21.0	0.07	62 594
1650E	2598	18.8	0.74	02,004
	3209	16.4	0.63	62.586
1750E	3471	21.3	0.74	· · ·
	1541	24.8	0.67	62,587
1850E	1195	17.5	0.74	-
1850E	1024	15.8	0.70	·
10505	1138	3.8	-0.39	62,601
19505	2205	10.5	. 0.90	· · · · · · · ·
19505	1990%	9.4	0.84	- -
2050F	1902	QE	0.94	02,590
LOUOL	TTOL	J. J	0.04	62 503
2150E	2166	7.3	0.96	02,090
· · · ·				62,610
2250E	2018	7.6	0.92	,
				62,610
2350E	2394	10.0	0.88	• • • •
04505				62,611
ZADUE	2237	10.5	0.93	· · · · · · · · · · · · · · · · · · ·
25505	1560	0.1	0.00	62,629
ZJJUE	100	9.1	0.88	E0 CA1
2650F	1046	10.0	0 00	02,041
LUUUL	1340	10.0	0.90	- 52 551
2750E	1446	- 6.8	-1.54	02,001
			2104	62.659
2850E	2060	9.8	0.92	-
2950E	2203	14.0	0.91	-
		e de la compañía de l	-	62,632
•				
LINE 9800N		•		· ·
			-	62 621
1450E	2379	17.3	0.69	-
				62,615
1550E	436	14,9	0.29	· · · · · · · · · · · · · · · · · · ·
: · ·				62,609
1650E	1950	4.3	-0.67	
				62,592

. .

63

• • • • • • • • • • • • • • • •

rage rorty-mine

Station	Resistivity	Chargeability	L/M	Magneti
1750E	1629	9.8	0.18	
1850E	1298	12.6	0.63	62,597
1950E 1950E	1466 1669	1.10 8.5	-2.36 1.06	62,590 - -
2050E 2050E	2480 2480 -	10.3 9.1	0.74 0.91	62,596
2150E	2090	11.3	0.80	62,549
2250E	2119	9,6	0.89	- 62 442
2350E	1363	9.0	0.89	50 000
2450E	870	8.5	0,98	62,989 - 62,989
2550E	733	10.0	1.00	-
2650E	593	10.9	0.99	63,012 63,236 62,950
2750É	1857	9.8	0.90	- -
2850E	1059	10.3	0.97	62,930
2950E	1353	11.3	0.97	62,822
3050E	1116	9.4	1.04	62,696 - 62,844
				02,011
LINE 10400N				•
1450E	2301	13.8	1.04	62,624
1550E	21 <i>2</i> 0	9.9	0 04	62,618
1650F	1657	12.0	1 05	62,619
17505	1021	12.3	1,05	62,602
1750E 1850E	2363 1193 1332	11.0 26.1 26.3	0.75 0.75 0.81	62,638
·····	1575	18.8	0.82	62,581

Page Fifty

3	3	2	1	3	8

Station	Resistivity	Chargeability	L/M	Magnetics
1950E	1560	16.4	0.79	62 621
2050E	1790	12.4	0.81	-
2150E	2964	8.8	0.80	62,616 - 62.589
2250E	1672	10.6	0.97	-
2350E	998	8.6	0.81	- - 62-590
2450E	1286	6.0	0.83	
2550E	1506	7.8	0.90	62,554 - 62,912
2650E	1997	7.0	0.83	
2750E	2237 1736 1525	10.4 13.9	0.89	62,099
2850E	1810	13.3	1.00	02,013 -
2950E	831	11.8	1.00	62,693 - 62,642
3050E	818	10.3	1.00	62 813

÷

1057

#### . G R A D I E N T A R R A Y

CURRENT ELECTRODES ON LINE 9800N AT 2250E AND 5250E

> LINES 9200N 9800N

Page Fifty-One

Station	Resistivity	Chargeability	L/M	Magneti
LINE 9200N				
2850F	1765	9 0	0.70	62,659
	2440	13.5	0.79	-
2950E	2260	17.5	0.76	-
3050E	932	13.8 13.8	0.40	62,632
2195F	1640	0.0		62,615
3150E	2070	8.9 9.3	0.94	62.556
22505	<u>`</u>			62,773
3230E	2360	11.3	0.71	- 62 715
3350E	2010	6.5	-0.69	-
3450E	3620	10.5	0.74	62,679
	~~~~	7419	V./7	62,671
3550E	2980	6.0	0.22	- 62 660
3650E	2550	12.5	0.74	-
3750F	2670	11.0	0 66	62,670
	2070	11,0	0.00	62,678
3850E	2630	7.9	0.72	- 60 COT
3950E	1880	7.1	-0.07	- 02,085
4050F	1910	10.0	0.02	62,679
	1010	10.0	0.82	62,677
4150E	1675	12.4	0.91	-
4250E	2300	13.0	0.88	02,0/1
43505	2320	0.4	1 00	62,674
10002	2320	7,4	1.00	62,682
4450E	1630	9.1	0.91	-
4550E	1825	12.0	0.87	62,685
			an a	62,703
THE DOON				
LINE JOUNN				62.930
2850E	2000	8.1	0.93	
2950E	1510	9.5	0.84	62,822
			<i>W</i> 1 W 1	62,696

5

)

Ь

Page Fifty-Two

332141

Station	Resistivity	Chargeability	L/M	Magnetics
3050E	1475	8.4	0.95	_
3150E	2110	9.5	0.95	52,844 62,821
3250E	2280	10.2	0.97	62,000
3350E	3270	12.3	0.97	62,830
3450E	2230	9.9	0.81	62,780
3550E	4140	5.4	1.17	62,698
3650E	3050	15.7	0.78	62,647
3750E	2190	15.2	0.70	
3050E	2930	11.1	0.94	62,748
4050E	2740	7.8	0.77	62,706
4150E	1765	10.4	0.77	62,690
4250E	2190	9.6	0.92	62,682
4350E	1795	11.0	0.98	62,681 - -
4450E	1445	9.9	0.86	62,000 - 62,693
4550E	1025	12.8	0.84	62.683
4650E	1510	9.8	0.80	62,685
				an an an Arthur an Arthur An Arthur An Arthur an Arthur an Arthur

on a

SCHLUMBERGER ARRAY				
LINES	9200N			
	9800N			
	10400N			

100

.

P

S	TATION INTERVAL	IN	FEET
· · ·	RESISTIVITY	IN	OHM-ME TRES
	CHARGEABILITY	IN	MILLIVOLTS/VOLT
TOTAL	MAGNETIC FIELD	IN	GAMMAS
Page Fifty-three

332143

Station	Resistivity	Chargeability	Magnetic
Line 9200N			
445 0E	1469	8.8	-
1550E	1331	9.4	62,685 -
1650P	1069	17.0	62,703
IOJOE	1002	17.8	62,717
750E	1286	11.6	- 62.722
850E	1549	10.5	62 744
950E	1546	14.0	-
i050E	1175	11.3	62,797
150E	1434	12.0	62,724 -
250E	2060	13.0	62,695
9505	1 (20)	10,0	62,694
3 DUE	1632	10.8	62,695
450E	897	10.8	62.689
550E	1239	9.0	62 607
650E	2198	10.3	62,734
750E	2635	10.3	62,996 -
850E	1903	11.3	62,661
950E	1062	11 5	62,675
0508	1460	14 0	62,669
	1400	17.0	62,672
J OLF	2124	13.0	62,669
250E	1451	16.5	62.670
350E	1395	14.5	62 740
450E	2950	10.5	U4,142
550E	1336	12.5	62,735 -
650E	2023	13 5	62,710 -
			62,704

516

)

P

Page Fifty-four

332144

station	Resistivity	Chargeability	Magnetics
ine 9800N			ويرور بالمحمومين ولايا أوالا
450E	1204	8.5	· .
1550E	961	12 Q	62,693
	- 000	12, U	62,683
650E	1376	8,5	_ 62.685
750E	1829	10.0	
850E	1829	12.7	02,000
950E	1982	10.8	62,690
5050F	1 599	10 0	62,697
	1344	16.0	62,707
150E	1151	11.5	62 698
250E	1363	13.3	-
350E	1620	14.0	62,690 -
450E	714	1 8 1	62,688
·	~~~		62,699
155UE	850	14.8	- 62.692
650E	1564	13.2	
5750E	802	11.7	02,091 -
50E	1573	13.5	62,684 -
	1520	 19 A	62,674
1990E	1007	13.0	- 62,679
5050E	1420	9.5	_ 69 664
150E	1,676	16.8	-
5250E	2065	13.5	62,697 -
350F	1070	19 <u>4</u>	62,720
		↓ 40 • 1	- 62,979
j450e	962	13.5	62.694
550E	2419	16.0	
650E	1646	24.0	02,0 <i>22</i> -
5750E	2065	19.8	62,710
			62,691

- A

.

Page Fifty- five

332145

Station	Resistivity	Chargeability	Magnetic
6850E	1770	19.0	<u></u>
6950E	æ	n an an Arrange an Arr Arrange an Arrange an Ar	62,729 <u>-</u>
			62,795
Line 10400N			· · · ·
2950E	782	14.3	
3050E	1239	14.5	62,642
8150E	960	16.0	62,813
	500	10,2	63,117
3250E	929	17.7	62.893
3350E	1349	13,5	60 001
3450E	998	15.8	02,831
3550E	1451	21.0	62,762
8650E	1955	20.8	62,944
	1000	20,8	62,790
3750E	865	21.7	- 62.708
850E	1018	14.5	,
950E	679	13.5	02,004
050E	724	11.3	62,676 -
150E	857	9 0	62,669
BEAR	054	5,0	62,660
230E	804	7,0	62,669
1350E	728	7.0	62 674
450E	732	10.2	
550E	885	7.5	-
650E	1189	9.5	62,685 -
750E	1186	11 7	62,682
0507	1000		62,682
LOOUR	T 282	15.8	- 62,689
950E	1062	15.0	69 609
5050È	1069	18.0	-
			62,691

· · ·

· ·

. . . .

Page Fifty-six 332146

Station	Resistivity	Chargeability	Magnetics
51,50E	1443	26.0	
1250E	1145	24.0	62,697 -
350E	1396	25,8	62,699 -
5450E	1363	39,8	62,731
550E -	708	36.8	62,684
650E	1180	35.3	62,688
750E	1097	40.3	62,682
850E	1191	22 3	62,681
050E	1195	20.3	62,676
2050P	1092	27 5	62,702
21 5 0 F	1025	55.0 96.7	62,711
NIJUE Rođan	1014	20, r 90 A	62,622
230E	900	32.0	62,652
JJJUE	155	21.1	62,672
940UE	004	35.0	62, 699
550E	842	39.3	62,690
nodur Nodur	1012	34.5	62,682
DI DUE	472	44.3	62,686
5850E	861	33.3	- 62,690
5950E			62,695
7050E			62,696