Laboratory Report

LJN2020-005 (Includes LJN2020-027, LJN2019-092-3, LJN2019-050-9)

Geochronology and geochemistry of gem sapphires and zircons from the St Helens district and elsewhere in Tasmania

An unpublished Mineral Resources Tasmania Report for: MRT

By: R S Bottrill, S. Meffre, I. Belousov, E. Matchan, and J. Everard

Date: 7 January 2024

Mineral Resources Tasmania Department of State Growth

SUMMARY

Source rocks for sapphires in north-eastern Tasmania have recently been determined at a site on Logans Road in the Priory sapphire field, east of St Helens, where a small diatreme or breccia pipe has been emplaced within Devonian granite.

Fresh volcanic glass from the basanite diatreme was separated and dated using Ar/Ar multi-collector mass spectrometry to reveal a 42.0 (\pm 0.1) – 47.2 (\pm 0.1) Ma (2 σ) age for this basanite diatreme.

Coarse red-brown gemmy zircons are present with the alluvial sapphires, although they were not identified within the basanite itself, and these were dated by the U-Pb method using laser ablation inductively coupled mass spectrometry (LA-ICPMS). Two populations were found, one between \sim 42 - 44 (± 4) Ma and one between 233 - 247 (± 4) Ma.

The younger Eocene zircon date closely matches the Ar/Ar date of the basanite host, and probably records partial resetting by that magma. The older Middle Triassic zircon population comes from an unknown, underlying source, possibly a Triassic intrusive.

The site at Logans Road helps to explain the origin of gem sapphires and zircons in this district, although their ultimate origin is enigmatic.

Data is also provided on sapphires and rubies from other parts of Tasmania.

INTRODUCTION

Many notable occurrences of gem sapphire are known in Tasmania, mostly in the extensive alluvial tin-bearing deposits in the northeast (Yim et al., 1985, McGee, 2005, Sutherland & Webb, 2007, Bottrill & Baker, 2008, Graham, et al., 2020; Fig. 1). The sapphires and zircons are very typically associated with coarse-grained, ferroan (pleonaste) spinel in alluvial deposits, but are rarely seen within any host rock, and thus their sources are enigmatic.

LJN2020-005-NE Tas gems-v7

Page 2 of 52

Recently some new work on these gem occurrences has been undertaken. Analyses of Tasmanian zircons have been reported by Sutherland et al (2019) and the first confirmation of Tasmanian rubies has been reported by Bottrill et al (2019a, 2019b) from the NE, Cygnet and Devonport districts.

Figure 1. Sapphire locations in Tasmania

A source rock for sapphires in north-eastern Tasmania has recently been determined at a site on Logans Road in the Priory sapphire field, east of St Helens, where a small basaltic diatreme or breccia pipe has been emplaced within Devonian granite (Figs. 2 - 4). These diatremes are typically prominent in aeromagnetic images (Fig. 5). This area appears undisturbed by tin mining.

LJN2020-005-NE Tas gems-v7

Page 3 of 52

Fig. 2. Geological map of the St Helens area showing the location of Fig. 2 & 3 (red box). From Morrison (2019)

LJN2020-005-NE Tas gems-v7

Page 4 of 52

Fig. 3. Geology, Logans Road area. From Morrison (2019).

Fig. 4. Geology, Logans Road Sapphire prospect area. From Morrison (2019).

LJN2020-005-NE Tas gems-v7

Page 6 of 52

Fig 6. Sapphire in weathered basalt pebble, Logans Road Area. Field of view about 12cm.

Fig. 7. Sapphire (close up of above sapphire).

The Logans Rd diatreme consists mainly of basanite clasts containing abundant partly disaggregated spinel lherzolite xenoliths and some altered granite xenoliths.

Fig. 8. Green spinel Iherzolite xenoliths and white pyroxene and feldspar xenocrysts in hackly/nodular basalt, Mother Logans Road Quarry. Field of view about 12cm.

Just 200m south of the Mother Logans diatreme, sapphires occur as detrital grains in the surrounding headwater drainage together with pleonaste spinel, zircon, pyroxenes and olivine, which mostly appear to derive from the diatreme. The mineral grain shapes are rather irregular and angular with little or no transport abrasion and are obviously adjacent to their source. The creeks also contain variably weathered basanite boulders and pebbles. On their soft brown weathered surfaces many mineral grains are emergent and readily identifiable. A single subrounded/subangular blue to grey sapphire, 7 mm across with a distinct parting with, was found partly exposed in a weathered, inclusion-rich pebble (Figs. 6 & 7)by a prospector, Michael Lloyd (Duncan & Lloyd, 2013). Thus, at least some of the Tasmanian sapphires have a basaltic source.

LJN2020-005-NE Tas gems-v7

Page 8 of 52

Some 1.5km to the SE of this quarry is another basaltic diatreme, well exposed in the Halfway Hill quarry (Fig. 3, 9).

Fig. 9. Halfway Hill quarry, showing a) weathered granite on the left, a glassy contact zone ~20cm thick, against a 5m zone of massive/blocky to columnar basalt, cut by a brown zone of tuffaceous to blocky basaltic to polymict breccia, probably a diatreme; b) rounded xenoliths of granite and basalt within the breccia zone.

The diatreme contains varied xenoliths and xenocrysts, including granite, sanidine, syenite? And amphibole (kaersutite?) (Fig. 9, 10).

LJN2020-005-NE Tas gems-v7

Page 9 of 52

Fig. 10. Exposed breccias in Halfway Hill quarry showing clasts rich in: (a) sanidine (syenite?); (b) amphibole (kaersutite?) xenocrysts.

LJN2020-005-NE Tas gems-v7

Page 10 of 52

Commented [CT1]: No Description

WHOLE ROCK GEOCHEMISTRY

The host rocks at Logans Road and Halfway Hill were analysed by XRF and their compositions are relatively low in silica, with a moderately high alkali content, and plot as a basanite (Appendix 5., Fig. 10). They are similar to other local basanites in the Ansons Bay – St Helens area, and also the ~47 Ma basalts of the Weldborough area ~15 km to the west. The ~16 - 18 Ma lavas of the Ringarooma valley further west are mainly nephelinites and extend to much lower silica values.

Fig. 11. Total alkali-silica (TAS) plot, comparing host rocks at Logans Road and Halfway Hill with other Cenozoic basalts from NE Tasmania. Major elements recalculated to 100% anhydrous. IUGS classification also shown.

LJN2020-005-NE Tas gems-v7

Commented [EJ2]: Should quote actual analyses. There are analyses from both localities in TIGER)

Page 11 of 52

SAMPLES STUDIED

Several grains of zircons, sapphires, rubies, apatite and spinel, from Mother Logans Rd and various other parts of Tasmania, were analysed to determine their identity, age and origin. Sample details are shown in Table 1.

Reg No.	Location	Description	Source
G409328	Mother Logans Rd Qy, Priory	Sapphires	Michael Lloyd, D Duncan
G409289	Penguin district	Ruby, sappphire	Andrew Burke
G410241	Forsters Rt, Cygnet	Ruby, sappphire	C. Drayton
G410292	Black Ck , Pioneer	Zircons	M. De Salas
G410293	Mother Logans Rd Qy	Zircons	M. De Salas
G410294	Main Ck, Moorina	Zircons	M. De Salas
G410295	Frome R, Moorina	Zircons	M. De Salas
G410296	Weld R, Moorina	Zircons	M. De Salas
G410146	Weld R, Moorina	Chrysoberyl/apatite	T. Coyte
G410147	Weld R, Moorina	Purple-red ruby	T. Coyte
G410148	Weld R, Moorina	Red ruby/spinel	F.L. Sutherland

Table 1: Sample details for samples tested by LAICPMS.

SAMPLES DESCRIPTION

Small font numbered labels over mineral grains on the following pictures correspond to the LA-ICPMS analysis number for U-Pb dating (e.g. Tables 2 and 3). FOV stands for the width of Field Of View.

G409328 Mother Logans Rd Qy Sapphires

Fig 12. G409328. Gem sapphires. Polished block is 25mm diameter.

G409289 Penguin district Ruby, sapphire

Fig 13. G409289. Gem ruby and sapphire. Field of View (FOV) is ~18 mm.

G410241 Forsters Rt, Cygnet Ruby, sapphire

Fig 14. G410241. Gem ruby (pink), olivine (yellow-green) and sapphires (blue). Field of View (FOV) is ~20 mm

Fig 15. G410292. Gem zircons 3-5 mm each, showing analysis points and numbers. Field of View (FOV) is ~20 & 18 mm.

Fig 16. G410293. Gem zircons points and numbers. Field of View (FOV) is ~20 mm.

Fig 17. G410294. Gem zircons points and numbers. Field of View (FOV) is ~20 mm.

LJN2020-005-NE Tas gems-v7

Page 15 of 52

Fig 18. G410295. Gem zircons points and numbers. Field of View (FOV) is ~20 mm.

Fig 19. G410296. Gem zircons points and numbers. Field of View (FOV) is ~20 mm.

G410146 Weld R, Moorina Chrysoberyl/apatite

Fig 20. G410146. Gem apatite ("Chrysoberyl") from Weld R, Moorina. Field of View (FOV) is ~8 mm.

G410147 Weld R, Moorina Purple-red ruby

Fig 21. G410147. Rounded purple-red ruby. Field of View (FOV) is ~8 mm

LJN2020-005-NE Tas gems-v7

Page 17 of 52

G410148 Weld R, Moorina LAICPMS Red "ruby"/spinel

Fig 22. G410148. Weld R, Moorina, Red ruby/spinel euhedral crystal. RHS shows laser ablation spots.

METHODS

U-Pb geochronology was undertaken at the University of Tasmania using the LA-ICPMS technique. The zircons were mounted in epoxy resin, polished using a clean lap, washed and analysed using an Excimer (193 nm) laser fitted with a Resonetics M50 ablation cell and an Agilent 7500 quadrupole ICPMS. Samples were analysed using a 32 µm spot at 5 Hz and 2J cm². The 91500 Zircon (Wiedenbeck et al. 1995, 2005) was used as a primary standard and the Temora, Gj1 and Plesovice zircons (Black et al. 2003; Jackson et al. 2004;) were used as a secondary standard. Pb-Pb mass bias was corrected using the NIST610 standard glass. Age calculations were performed using the techniques described in various University of Tasmania publications (e.g. Sack et al. 2011; Halpin et al. 2014).

LJN2020-005-NE Tas gems-v7

Page 18 of 52

MINERAL ANALYSES

Representative geochemical composition of the minerals analysed by LA-ICPMS at CODES, UTAS are shown in Tables 2 and 3. The number before the element symbol corresponds to the mass of isotope used for analysis.

 Table 2: Representative composition of apatite (G410146), ruby (G410147), and spinel (G410148) (wt.%).

Source Filename, CODES	C20JUN 05A0006 .csv	C20JUN 05A0011 .csv	C20JUN 05A0012 .csv	C20JUN 05A0013 .csv	C20JUN 05A0014 .csv	C20JUN 05A0015 .csv	C20JUN 05A0003 .csv	C20JUN 05A0004 .csv	C20JUN 05A0005 .csv		
Reg. No		G410146			G410147			G410148			
Mineral	apatite	apatite	apatite	ruby	ruby	ruby	spinel	spinel	spinel		
23Na	0.050	0.050	0.050	<0.001	<0.001	0.002	<0.001	< 0.001	<0.001		
24 Mg	0.005	0.004	0.004	0.004	0.004	0.004	32.788	32.137	32.550		
27 AI	<0.000	<0.000	<0.000	99.316	99.304	99.321	65.663	66.354	65.875		
29Si	0.724	0.715	0.706	0.114	0.116	0.096	0.114	0.105	0.107		
31 P	38.968	39.397	39.898	<0.005	<0.005	< 0.004	< 0.004	0.004	<0.004		
44 Ca	58.972	58.559	58.065	<0.005	<0.005	<0.005	< 0.004	< 0.004	<0.004		
49Ti	0.000	0.000	<0.000	0.007	0.024	0.010	0.032	0.032	0.036		
51V	0.004	0.004	0.004	0.002	0.002	0.003	0.078	0.080	0.080		
53Cr	<0.000	<0.000	<0.000	0.049	0.050	0.050	0.678	0.660	0.699		
55Mn	0.014	0.014	0.014	<0.000	0.000	0.000	0.001	0.001	0.001		
57Fe	0.005	0.006	0.005	0.482	0.474	0.487	0.500	0.484	0.507		
66Zn	0.000	0.000	0.000	0.000	0.000	0.000	0.106	0.104	0.107		
71Ga	0.001	0.001	0.001	0.025	0.024	0.025	0.029	0.028	0.028		
88Sr	0.258	0.257	0.255	<0.000	0.000	0.000	<0.000	<0.000	<0.000		
89Y	0.036	0.036	0.036	0.000	0.000	0.000	<0.000	<0.000	<0.000		
139La	0.225	0.222	0.223	0.000	0.000	0.000	<0.000	<0.000	<0.000		
140Ce	0.474	0.469	0.472	0.000	0.000	0.000	<0.000	<0.000	<0.000		
146Nd	0.160	0.159	0.160	<0.000	0.000	0.000	<0.000	< 0.000	<0.000		
147Sm	0.021	0.021	0.022	0.000	0.000	0.000	<0.000	<0.000	<0.000		
232Th	0.072	0.073	0.071	0.000	0.000	0.000	< 0.000	< 0.000	0.000		

LJN2020-005-NE Tas gems-v7

Page 19 of 52

Source Filename	C20MAY01A 0037.csv	C20MAY01A 0040.csv	C20MAY01A 0041.csv	C20MAY01A 0042.csv	C20MAY01A 0043.csv	C20MAY01A 0037.csv
11B	0.022	0.020	0.016	0.018	0.020	0.022
24Mg	47.987	47.991	48.301	48.108	48.305	47.987
27AI	0.530	0.544	0.460	0.545	0.479	0.530
29Si	46.509	47.462	47.080	47.668	46.828	46.509
44Ca	0.020	0.022	0.021	0.024	0.025	0.020
49Ti	0.006	0.008	0.005	0.011	0.005	0.006
53Cr	0.126	0.184	0.145	0.291	0.188	0.126
55Mn	0.169	0.157	0.126	0.146	0.119	0.169
57Fe	4.312	3.293	3.502	2.908	3.672	4.312
59Co	0.006	0.006	0.006	0.005	0.005	0.006
60Ni	0.266	0.239	0.278	0.226	0.270	0.266
66Zn	0.030	0.058	0.047	0.031	0.060	0.030

 Table 3: Representative LA-ICPMS analysis results of yellow olivine in the sample

 G410241 (wt.%). Spot size 51 μm.

GEOCHRONOLOGY RESULTS

Coarse red-brown gemmy zircons are present with the alluvial sapphires, although they were not identified within the basanite itself, and these were dated at UTAS by NAMES using U-Pb method developed for laser ablation inductively coupled mass spectrometry (LA-ICPMS). Two populations were found, one between ~42-44 (\pm 4) Ma and one between 233-247 (\pm 4) Ma (Appendix 1).

The younger zircon date probably records partial resetting by the basanite host, as it closely matches its Ar/Ar date; the older date probably records an unknown, underlying Triassic intrusive source.

There is a 233 \pm 5 Ma (K/Ar) alkali basalt flow near St Marys (Calver & Castleden, 1981) and a 214 \pm 1 Ma (K/Ar) age from "felsic tuff" near Bicheno (Bacon & Green, 1984). Rhyolite clasts occur in the upper Triassic near St Marys, and may have a proximal source (Forsyth, 1989). No in situ Triassic felsic lavas or intrusives have been found in Tasmania, however.

LJN2020-005-NE Tas gems-v7

Page 20 of 52

SUMMARY AND CONCLUSIONS

Many significant occurrences of precious and semi-precious stones occur in Cainozoic sediments within Tasmania. These include: sapphire, zircon, chrysoberyl, spinel and ruby in alluvial tin-bearing deposits in northeast Tasmania (Bottrill & Mathews, 2006, Bottrill & Baker, 2008, Harris et al., 2014). They are rarely found in hard rock sources but sapphire, spinel and much of the zircon are thought to be sourced in alkali basalt diatremes and related rocks (Harris et al., 2014).

McGee (2005) found that oxygen isotope values in sapphires from northeast Tasmania indicate shallow mantle values, and they were probably brought to the surface in basaltic diatremes. Tertiary basalt is present in the Ringarooma River valley and as isolated remnants at higher levels, such as the Weldborough Pass basalt, including an eruptive centre, locally containing deep crustal to upper mantle xenoliths of Iherzolite, anorthoclasite and sanidinite. These xenoliths are similar to xenoliths found at some of the related sapphire occurrences in Queensland (Robertson & Sutherland, 1992). Basalts near Derby contain Iherzolite xenoliths including black spinel.

Source rocks for sapphires in north-eastern Tasmania have recently been determined conclusively at a site on Logans Road in the Priory sapphire field, east of St Helens, where sapphires and spinel occurs adjacent to a small basalt diatreme or breccia pipe that has been emplaced within Devonian granite. The diatreme consists mainly of basanite clasts containing abundant partly disaggregated spinel lherzolite xenoliths, but also contains altered granite xenoliths within the diatreme. A nearby diatreme contains syenitic xenoliths and probably kaersutite xenocrysts. This basanite has been dated at between 42 - 47 Ma , which matches the ages of some of the alluvial zircons nearby.

Some older zircons in the alluvium (233-247 (± 4) Ma.) have an unknown source but were presumably reset by the basalt intrusion.

The sapphires from Mother Logans prospect were confirmed analytically.

A "Chrysoberyl" from Weld R, Moorina, was actually found to be an apatite.

LJN2020-005-NE Tas gems-v7

Page 21 of 52

Two "rubies" from Weld R, Moorina were analysed : one was confirmed as a ruby but the other was a red spinel, something not previously recorded from Tasmania.

Ruby and sapphire were also confirmed from the Penguin and Cygnet districts, suggesting these gems may be more widespread in Tasmania.

REFERENCES

- Bacon, C.A. & Green, D.C., 1984. A radiometric age for a Triassic tuff from eastern Tasmania. *Tasmanian Geological Survey, Unpub. Rept.* 1984/29
- Black, L. P., Kamos, L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C., 2003, TEMORA 1: a new zircon standard for Phanerozoic U– Pb geochronology. *Chemical Geology* 200, 155–170.
- Bottrill, R. S., 1996, Corundum and sapphire in Tasmania. *Tasmanian Geological Survey, Unpub. Rept.* 1996/05
- Bottrill, R. S., 1998, A Corundum-quartz assemblage in altered volcanic rocks, Bond Range, Tasmania. *Mineralogical Magazine*, v. 62, p. 325-332.
- Bottrill, R.S. & Baker, W.E., 2008, *A Catalogue of the Minerals of Tasmania.* Bull. 73. Tasmanian Geological Survey
- Bottrill, R.S., 2019a. Mineralogical Analyses, Forsters Rt, Lymington. Mineral Resources Tasmania. Unpub. MRT Lab Report, LJN2019-092-9, 8pp
- Bottrill, R.S., 2019b. Mineralogical Analyses, Devonport district. Mineral Resources Tasmania. Unpub. MRT Lab Report, LJN2019-092-3, 7pp
- Bottrill, Ralph; Everard, John; Duncan, David; Sutherland, Lin; Meffre, Sebastien and Matchan, Erin, 2021. Gem sapphires and zircons in a basalt diatreme, northeastern Tasmania | 2021 AESC (aesconvention.com.au)
- Bottrill, R.S., and Mathews, W.L., 2006. Occurrences of gemstone minerals in Tasmania. Mineral Resources Tasmania
- Calver, C. R.; Castleden, R. H. 1981. Triassic basalts from Tasmania. Search 12:40-41
- Duncan, D.McP. and Lloyd, M., 2013. The discovery and exploration of the Priory Sapphire Field. Unpublished Report for RG Prospecting. Mineral Resources Tasmania. TCR 15_7143
- Forsyth, S.M. 1989. Upper Parmeener Supergroup. *Geology and Mineral Resources of Tasmania.* Geol. Soc. Aust., Spec. Pub. 15.
- Graham, I, Raffan, N, Bottrill, RS, Duncan, DM, Birch, WD, Downes, PJ, Stocklmayer, SM, 2020. Update on Australian Sapphire. *The Australian Gemmologist*, 27(4), 175-189.

LJN2020-005-NE Tas gems-v7

Page 22 of 52

Commented [CT3]: Poorly worded?

- Halpin, J.A., Jensen, T., McGoldrick, P., Meffre, S., Berry, R.F., Everard, J.L., Calver, C.R., Thompson, J., Goemann, K., and Whittaker, J.M., 2014, Authigenic monazite and detrital zircon dating from the Proterozoic Rocky Cape Group, Tasmania: Links to the Belt-Purcell Supergroup, North America. *Precambrian Research*, v. 250, p. 50–67, oi:10.1016/j.precamres.2014.05.025.
- Colhoun, E., Harris, Peter, Andrew Heap, R Bottrill, C Bacon, D Duncan, 2014. The Quaternary in Tasmania. Chapter 10: In: Corbett, K.D., Quilty, P.G. and Calver, C.R. (editors), *Geological Evolution of Tasmania*. Geological Society of Australia Special Publication 24, Geological Society of Australia (Tasmania Division), pp 511-548.
- Jackson, S.E., Horn, I., Longerich, H.P., Dunning, G.R., 1996. The application of laser ablation microprobe (LAM)-ICP-MS to in situ U–Pb zircon geochronology. *V.M. Goldschmidt Conference, J. Conf. Abstr.* 1, 283.
- Khin Zaw, Sutherland, F. L. Dellapasqua, F., Ryan, C.G., Yui, Tzen-Fu, Mernagh, T.P. and Duncan, D.McP, 2006. Contrasts in gem corundum characteristics, eastern Australian basaltic fields: Trace elements, fluid/melt inclusions and oxygen isotopes. *Mineralogical Magazine* 70(6):669-687
- Matchan, E. 2020. ⁴⁰Ar/³⁹Ar step-heating analysis of basanite groundmass sample. University of Melbourne. R013378/NJ449 Report UM20-0801.
- McGee, B. M., 2005, Characteristics and origin of the Weldborough sapphire, NE Tasmania. Unpub Hons thesis, University of Tasmania.
- Morrison, K., 2019, Exploration Licence 9/2013 Priory annual report licence Year 5 and final report. Unpublished Report for RG Prospecting. Mineral Resources Tasmania. TCR 19_8063
- Robertson ,A.D.C. and Sutherland, F. L. 1992. Possible origins and ages for sapphire and diamond from the central Queensland gem fields. *Records of the Australian Museum Supplement* 15:45–54
- Sack P.J., Berry R.F., Meffre S., Falloon T.J., Gemmell J.B., et al. (2011) 'In situ location and U-Pb dating of small zircon grains in igneous rocks using laser ablation-inductively coupled plasma-quadrupole mass spectrometry', *Geochemistry Geophysics Geosystems*, 12, (April) Article Q0AA14.;
- Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S., Morris, G.A., Nasdala, L., Norberg, N. and Schaltegger, U., 2008. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. *Chemical Geology*, 249(1-2), pp.1-35.
- Sutherland, F.L., Webb, G.B., 2007. Australian Sapphires and Rubies. *Rocks & Minerals* · March 2007. 82.2. p116-139
- Sutherland , F.L., Graham, I.T., Yaxley, G., Armstrong, R., Giuliani, G., Hoskin, P., Nechaev V., and Woodhead, J., 2016, Major zircon megacryst suites of the Indo Pacific. *Mineralogy and Petrology*, **110**, 399-420.
- Sutherland, F.L., Graham, I.T., Meffre, S., Thompson, J., Khin Zaw, Bottrill, R., 2019 Multiple zircon megacryst U–Pb ages, 250–13 Ma, and geochemistry, Weldborough, NE Tasmania: Links to Tasmanian volcanic events and

LJN2020-005-NE Tas gems-v7

Page 23 of 52

offshore New England Orogen rocks. *Abstracts, SGGMP Meeting*, Devonport, 2019

Tasmania Department of Mines, 1970. Occurrences of gemstone minerals in Tasmania. Mineral Resources Tasmania

- Wiedenbeck, M.A.P.C., Alle, P., Corfu, F.Y., Griffin, W.L., Meier, M., Oberli, F.V., Quadt, A.V., Roddick, J.C. and Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. *Geostandards newsletter*, 19(1), pp.1-23.
- Yim, W.W.-S., Gleadow, A.J.W. and Van Moort, J.C., 1985: Fission track dating of alluvial zircons and heavy mineral provenance in North-east Tasmania. *J. Geol. Soc. Lond.* 142: 351-356.

R.S. Bottrill MINERALOGIST/PETROLOGIST

Disclaimers

While every care has been taken in the preparation of this report, no warranty is given as to the correctness of the information and no liability is accepted for any statement or opinion or for any error or omission. No reader should act or fail to act on the basis of any material contained herein. Readers should consult professional advisers. As a result, the Crown in Right of the State of Tasmania and its employees, contractors and agents expressly disclaim all and any liability (including all liability from or attributable to any negligent or wrongful act or omission) to any persons whatsoever in respect of anything done or omitted to be done by any such person in reliance whether in whole or in part upon any of the material in this report. The MRT laboratories are not NATA registered but work to similar standards. This and other data collected in MRT laboratories may enter the MRT databases but every attempt will be made to ensure it remains closed file and not be available externally, unless at your request.

LJN2020-005-NE Tas gems-v7

Page 24 of 52

Appendix 1: LA-ICPMS results, University of Tasmania

Representative analysis of pink "ruby"

Representative oxygen-free analysis from sample **G409289**, from near Penguin. Note presence of chromium (Cr), iron (Fe), silicon (Si) and titanium (Ti) impurities in this pink ruby. Spot size 51 microns.

	C20MA	C20MA	C20MA	C20MA	C20MA	C20MA	C20MA	C20MA	C20MA	C20MA
File	Y01A00	Y01A00	Y01A00	Y01A00	Y01A00	Y01A00	Y01A00	Y01A00	Y01A00	Y01A00
name	03.csv	04.csv	05.csv	06.csv	07.csv	08.csv	09.csv	10.csv	11.csv	12.csv
24Mg	0.038	0.037	0.038	0.037	0.039	0.039	0.038	0.035	0.039	0.039
27A1	99.234	99.231	99.229	99.268	99.233	99.224	99.226	99.268	99.227	99.241
29Si	0.142	0.143	0.138	0.136	0.128	0.141	0.136	0.129	0.120	0.120
31P	0.004	0.004	0.003	0.004	< 0.002	< 0.003	< 0.002	0.003	0.003	0.003
44Ca	< 0.001	0.002	0.002	0.002	0.001	< 0.001	< 0.001	0.001	0.001	0.001
49Ti	0.013	0.013	0.013	0.013	0.014	0.014	0.014	0.014	0.015	0.015
51V	0.006	0.005	0.006	0.005	0.006	0.006	0.006	0.005	0.006	0.006
53Cr	0.372	0.383	0.377	0.355	0.383	0.380	0.388	0.370	0.398	0.386
57Fe	0.187	0.177	0.189	0.175	0.191	0.192	0.188	0.172	0.186	0.186

Representative analysis of blue sapphire

Representative oxygen-free analyses of blue sapphire, sample G409289 Penguin district. Note presence of impurities, namely, ~1.3 wt% of iron (Fe), and ~0.04 wt% of gallium (Ga), common in natural gems, as well as a lack of or very low content of Cr and other elements. Spot size 51 microns.

	C20MA	C20MA	C20MA	C20MA	C20MA	C20MA	C20MA	C20MA	C20MA	C20MA
Source	Y01A00	Y01A00	Y01A00	Y01A00	Y01A00	Y01A00	Y01A00	Y01A00	Y01A00	Y01A00
Filename	13.csv	14.csv	15.csv	16.csv	17.csv	22.csv	23.csv	24.csv	25.csv	26.csv
	G40928	G40928	G40928	G40928	G40928	G40928	G40928	G40928	G40928	G40928
Sample	9_blue	9_blue	9_blue	9_blue	9_blue	9_blue	9_blue	9_blue	9_blue	9_blue
24Mg	0.002	0.002	0.003	0.007	0.002	0.002	0.003	0.005	0.003	0.002
	0100-	01001			0.001	010 01	010.00	010.00	010.00	
27.41	00 570	00 (04	09.456	00 200	00 502	00 500	00.270	00 557	00 420	09 (04
2/AI	98.579	98.004	98.450	98.290	98.585	99.299	98.309	98.557	98.438	98.004
29Si	0.092	0.089	0.087	0.099	0.093	0.089	0.081	0.085	0.091	0.085
31P	0.003	0.003	0.003	0.003	0.004	0.003	0.003	0.005	< 0.002	0.003
44Ca	0.001	0.002	<0.001	< 0.001	0.001	0.002	0.001	0.001	<0.001	0.002
meu	0.001	0.002	.0.001	.0.001	0.001	0.002	0.001	0.001	10.001	0.002
1077	0.000	0.007		0.040	0.000	0.000		0.000		0.007
4911	0.008	0.006	0.023	0.013	0.008	0.008	0.029	0.009	0.027	0.007
51V	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
55Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
C										
Cr										
57Fe	1.273	1.258	1.389	1.538	1.263	1.270	1.465	1.289	1.403	1.261
71Ga	0.041	0.035	0.038	0.049	0.044	0.037	0.046	0.046	0.036	0.035

Representative oxygen-free composition of blue sapphire, sample **G409328** Penguin district. Note presence of impurities, namely, ~0.6 wt% of iron (Fe) and ~0.3 wt.% of Ga, as well as a lack of or very low content of other elements in these blue sapphires. Spot size 51 microns.

Source	C20MAY01	C20MAY01A	C20MAY01A	C20MAY01A	C20MAY01A	C20MAY01A	C20MAY01A
Filename	A0050.csv	0051.csv	0062.csv	0063.csv	0064.csv	0065.csv	0066.csv
	G409328_3	G409328_3	G409328_4	G409328_4	G409328_4	G409328_5	G409328_5
Sample							
24Mg	0.000	0.000	0.002	0.001	0.002	0.000	0.000
27Al	99.031	99.393	99.349	99.346	99.298	99.306	99.224
29Si	0.087	0.101	0.090	0.096	0.087	0.096	0.090
31P	0.005	0.004	< 0.002	< 0.002	0.003	< 0.003	0.003
44Ca	0.002	< 0.001	< 0.001	0.001	0.002	0.002	< 0.001
49Ti	0.008	0.002	0.091	0.084	0.119	0.009	0.009
51V	0.000	0.000	0.002	0.002	0.002	0.001	0.001
511	0.000	0.000	0.002	0.002	0.002	0.001	0.001
53Cr	< 0.000	0.001	0.001	0.002	0.002	< 0.000	< 0.000
57Fe	0.776	0.479	0.418	0.421	0.429	0.565	0.652
71Ga	0.028	0.019	0.045	0.044	0.044	0.021	0.020
93Nb	0.023	0.000	0.000	0.000	0.002	0.000	< 0.000
118Sn	0.001	0.000	0.000	0.000	0.000	0.000	0.000
181Ta	0.036	0.000	0.001	0.001	0.009	0.000	0.000

Representative oxygen-free composition of blue sapphire, sample **G409328** Mother Logan Road Quarry. Note presence of impurities, namely, ~0.5-1 wt% of iron (Fe), and ~0.2 wt% of gallium (Ga), common in natural gems, as well as lack of or very low content of other elements in these blue sapphires. Spot size 51 microns.

Filename	C20MAY01 A0052.csv	C20MAY01 A0053.csv	C20MAY01 A0054.csv	C20MAY01 A0059.csv	C20MAY01 A0060.csv	C20MAY01 A0061.csv	C20MAY01 A0049.csv
Sample	G409328_1	G409328_1	G409328_1	G409328_2	G409328_2	G409328_2	G409328_3
27.41	08 757	08 033	98 970	00 317	00 310	99 347	99 195
2751	0.101	0.005	0.110	0.002	0.005	0.001	0.100
2951	0.101	0.095	0.118	0.093	0.095	0.091	0.100
31P	0.005	0.004	0.003	0.003	< 0.002	0.004	0.005
49Ti	0.119	0.043	0.024	0.018	0.014	0.009	0.037
51V	0.001	0.000	0.000	0.001	0.001	0.001	0.000
57Fe	0.993	0.902	0.865	0.549	0.552	0.527	0.638
71Ga	0.021	0.020	0.019	0.018	0.018	0.019	0.024
Source Filename	C20MAY01A 0067.csv	C20MAY01A 0068.csv	C20MAY01A 0069.csv	C20MAY01A 0070.csv	C20MAY01A 0071.csv	C20MAY01A 0072.csv	C20MAY01A 0073.csv
Sample	G409328_5	G409328_6	G409328_6	G409328_6	G409328_7	G409328_7	G409328_7
7Li	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	0.000
9Be	< 0.000	0.000	< 0.000	0.000	< 0.000	< 0.000	0.000
11B	0.000	0.000	0.000	0.000	0.000	0.000	0.000
23Na	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
24Mg	0.000	0.002	0.003	0.004	0.001	0.001	0.004
27Al	99.204	99.162	99.233	98.932	99.150	99.260	98.797
29Si	0.089	0.090	0.094	0.095	0.084	0.079	0.077
31P	< 0.003	0.003	0.003	0.003	< 0.003	0.003	0.003
39K	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000
44Ca	0.002	< 0.001	0.001	0.002	0.002	0.001	< 0.001
45Sc	< 0.000	0.000	0.000	0.000	0.000	0.000	0.000
49Ti	0.015	0.005	0.012	0.071	0.011	0.025	0.047
51V	0.001	0.003	0.002	0.003	0.004	0.003	0.006
53Cr	< 0.000	< 0.000	0.000	< 0.000	0.000	0.000	< 0.000
55Mn	< 0.000	0.000	0.000	0.000	0.000	0.000	0.000
57Fe	0.668	0.702	0.631	0.860	0.723	0.607	0.967
59Co	< 0.000	< 0.000	< 0.000	0.000	< 0.000	< 0.000	< 0.000
60Ni	< 0.000	0.000	< 0.000	0.000	0.000	< 0.000	< 0.000
65Cu	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000
66Zn	0.000	0.000	0.000	0.000	0.000	0.000	0.000
71Ga	0.022	0.024	0.022	0.024	0.025	0.021	0.027
85Rb	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000
88Sr	0.000	0.000	< 0.000	0.000	< 0.000	< 0.000	< 0.000
89Y	0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000
90Zr	0.000	0.000	0.000	0.000	< 0.000	0.000	0.000

LJN2020-005-NE Tas gems-v7

Page 28 of 52

Source Filename	C20MAY01A 0067.csv	C20	0MAY01A 58.csv	C20M 0069.	IAY01A csv	C20MA 0070.csv	Y01A	C20MAY0 0071.csv	1A	C20MAY01A 0072.csv	C20MAY0 0073.csv	1A
Sample	G409328_5	G4	09328_6	G4093	328_6	G40932	8_6	G409328_2	7	G409328_7	G409328_7	,
93Nb	< 0.000	0.0	01	0.000		0.001		< 0.000		0.000	0.029	
98Mo	< 0.000	<0.	000	< 0.00	0	< 0.000		< 0.000		0.000	< 0.000	
118Sn	0.000	0.0	00	0.000		0.000		0.000		0.000	0.001	
137Ba	< 0.000	0.0	00	< 0.00	0	0.000		0.000		< 0.000	< 0.000	
139La	< 0.000	0.0	00	0.000		0.000		0.000		< 0.000	0.000	
140Ce	< 0.000	<0.	000	< 0.00	0	0.000		< 0.000		< 0.000	0.000	
146Nd	0.000	<0.	000	0.000		0.000		< 0.000		< 0.000	0.000	
147Sm	< 0.000	0.0	00	< 0.00	0	< 0.000		< 0.000		< 0.000	0.000	
172Yb	< 0.000	<0.	000	< 0.00	0	< 0.000		< 0.000		< 0.000	< 0.000	
178Hf	0.000	0.0	00	0.000		0.000		< 0.000		< 0.000	0.000	
181Ta	0.000	0.0	07	0.000		0.003		0.000		0.000	0.041	
182W	< 0.000	<0.	000	< 0.00	0	0.000		0.000		< 0.000	0.000	
208Pb	0.000	<0.	000	< 0.00	0	0.000		< 0.000		0.000	0.000	-
232Th	<0.000	<0.	000	< 0.00	0	0.000		< 0.000		< 0.000	0.000	
238U	<0.000	<0.	000	<0.00	0	0.000		< 0.000		0.000	0.000	
									GR		G001 6 + 1/04 +	
Source Filename	C20MAY01A 34.csv	400	C20MAY0 35.csv	1A00	C20MA 36.csv	Y01A00	44.csv	AY01A00	45.0	MAY01A00 csv	C20MAY01A 46.csv	.00
Sample	G410241_blu	ie2	G410241_t	olue2*	G41024	1_blue2	G4102	241_blue4	G41	10241_blue4	G410241_blu	e4
Spot Size (µm)	51		51		51		51		51		51	
7Li	< 0.000		< 0.000		< 0.000		< 0.00	0	<0.0	000	< 0.000	
9Be	< 0.000		< 0.000		0.000		< 0.00	0	<0.0	000	< 0.000	
11B	0.000		0.000		0.000		0.000		0.00	00	0.000	
23Na	< 0.001		< 0.000		< 0.000		< 0.00	0	<0.	000	< 0.000	
24Mg	0.012		0.013		0.008		0.036		0.0	11	0.009	
27Al	99.400		99.353		99.412		99.07	5	99.2	215	99.269	
29Si	0.063		0.079		0.070		0.074		0.00	52	0.057	
31P	< 0.003		0.008		0.003		< 0.00	2	0.00	02	0.002	
39K	< 0.000		< 0.000		< 0.000		< 0.00	0	0.00	00	< 0.000	
44Ca	0.003		0.001		0.001		0.002		0.00	02	0.001	
45Sc	0.000		0.000		0.000		< 0.00	0	<0.0	000	< 0.000	
49Ti	0.090		0.081		0.115		0.081		0.1	54	0.139	-
51V	0.013		0.013		0.012		0.001		0.00	01	0.001	
53Cr	0.052		0.059		0.044		0.024		0.02	24	0.027	
55Mn	< 0.000		0.000		< 0.000		< 0.00	0	<0.0	000	< 0.000	
57Fe	0.356		0.377		0.323		0.702		0.52	25	0.492	
59Co	<0.000		0.000		0.000		0.000		0.00	00	0.000	
60Ni	0.000		0.000		0.000		0.001		0.00	00	0.000	
65Cu	<0.000		<0.000		< 0.000		<0.00	U	<0.0	000	<0.000	
66Zn	0.000		0.000		0.000		0.000		0.00	0	0.000	
/IGa	0.010		0.011		0.010		0.004	0	0.00	33	0.003	
85Kb	<0.000		<0.000		<0.000		<0.00	0	<0.0	000	<0.000	
0051 90V	<0.000		0.000		<0.000		<0.00	0	<0.0	000	<0.000	
1 041	< < < < < < < < < < < < < < < < < < <								- <01		~	

LJN2020-005-NE Tas gems-v7

Page 29 of 52

Source Filename	C20MAY01A00 34.csv	C20MAY01A00 35.csv	C20MAY01A00 36.csv	C20MAY01A00 44.csv	C20MAY01A00 45.csv	C20MAY01A00 46.csv
Sample	G410241_blue2	G410241_blue2*	G410241_blue2	G410241_blue4	G410241_blue4	G410241_blue4
90Zr	0.000	0.002	0.000	< 0.000	0.000	0.000
93Nb	0.000	0.000	0.000	0.000	0.000	0.000
98Mo	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000
118Sn	0.000	0.000	0.000	0.000	0.000	0.000
137Ba	< 0.000	0.000	< 0.000	0.000	0.000	< 0.000
139La	0.000	0.000	0.000	0.000	< 0.000	0.000
140Ce	0.000	0.001	0.000	< 0.000	< 0.000	0.000
146Nd	< 0.000	0.000	< 0.000	< 0.000	< 0.000	< 0.000
147Sm	<0.000	0.000	<0.000	<0.000	< 0.000	<0.000
172Yb	0.000	0.000	0.000	< 0.000	< 0.000	< 0.000
178Hf	0.000	0.000	0.000	< 0.000	< 0.000	< 0.000
181Ta	0.000	0.000	0.000	0.000	0.000	0.000
182W	0.000	0.000	0.000	0.000	0.000	< 0.000
208Pb	0.000	0.000	0.000	0.000	0.000	0.000
232Th	0.000	0.000	0.000	< 0.000	0.000	0.000
238U	< 0.000	0.000	0.000	< 0.000	< 0.000	< 0.000

* Many inclusions with light REE, Y, Zr, U, Pb, Th, do not use these elements!

Source Filename	C20MAY01A004 7.csv	C20MAY01A004 8.csv	C20MAY01A002 7.csv	C20MAY01A002 8.csv	C20MAY01A002 9.csv	C20MAY01A003 0.csv
Sample	G410241 blue4	G410241 blue4	G410241 pink1	G410241 pink1	G410241 pink1	G410241 pink1
Spot Size (µm)	51	51	51	51	51	51
7Li	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000
9Be	<0.000	< 0.000	<0.000	< 0.000	< 0.000	< 0.000
11B	0.000	0.000	0.000	0.000	0.000	0.000
23Na	<0.000	< 0.000	< 0.001	< 0.000	< 0.000	< 0.001
24Mg	0.012	0.010	0.051	0.036	0.037	0.036
27Al	99.282	99.242	99.102	99.232	99.228	99.238
29Si	0.062	0.059	0.163	0.125	0.125	0.122
31P	0.004	0.004	0.003	0.004	0.004	0.003
39K	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000
44Ca	0.001	< 0.001	0.001	0.001	0.001	0.001
45Sc	<0.000	< 0.000	0.000	< 0.000	< 0.000	< 0.000
49Ti	0.090	0.157	0.012	0.011	0.011	0.011
51V	0.001	0.001	0.003	0.004	0.004	0.004
53Cr	0.029	0.024	0.401	0.422	0.421	0.421
55Mn	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000
57Fe	0.515	0.500	0.259	0.160	0.164	0.158
59Co	0.000	0.000	0.000	0.000	0.000	0.000
60Ni	0.000	0.000	0.001	0.000	0.000	0.000
65Cu	<0.000	< 0.000	<0.000	< 0.000	< 0.000	< 0.000
66Zn	0.000	0.000	0.000	0.000	0.000	0.000
71Ga	0.003	0.003	0.004	0.004	0.004	0.004
85Rb	<0.000	< 0.000	<0.000	< 0.000	< 0.000	< 0.000
88Sr	0.000	< 0.000	0.000	0.000	< 0.000	< 0.000

LJN2020-005-NE Tas gems-v7

Page 30 of 52

Source	C20MAY01A004	C20MAY01A004	C20MAY01A002	C20MAY01A002	C20MAY01A002	C20MAY01A003
Filename	7.csv	8.csv	7.csv	8.csv	9.csv	0.csv
Sample	G410241_blue4	G410241_blue4	G410241_pink1	G410241_pink1	G410241_pink1	G410241_pink1
89Y	< 0.000	<0.000	<0.000	< 0.000	< 0.000	< 0.000
90Zr	0.000	0.000	0.000	0.000	0.000	0.000
93Nb	0.000	0.000	0.000	< 0.000	< 0.000	0.000
98Mo	< 0.000	< 0.000	<0.000	< 0.000	< 0.000	0.000
118Sn	0.000	0.000	0.000	0.000	0.000	0.000
137Ba	0.000	0.000	<0.000	0.000	< 0.000	< 0.000
139La	0.000	< 0.000	0.000	0.000	0.000	<0.000
140Ce	< 0.000	0.000	<0.000	0.000	< 0.000	0.000
146Nd	0.000	<0.000	<0.000	<0.000	<0.000	<0.000
147Sm	< 0.000	< 0.000	0.000	0.000	0.000	< 0.000
172Yb	< 0.000	< 0.000	<0.000	< 0.000	< 0.000	<0.000
178Hf	< 0.000	<0.000	<0.000	< 0.000	< 0.000	< 0.000
181Ta	0.000	0.000	< 0.000	< 0.000	< 0.000	< 0.000
182W	0.000	0.000	0.000	< 0.000	< 0.000	< 0.000
208Pb	0.000	0.000	0.000	0.000	0.000	0.000
232Th	0.000	< 0.000	<0.000	< 0.000	0.000	< 0.000
238U	0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000

Source	C20MAY01A003	C20MAY01A004	C20MAY01A004	C20MAY01A004	C20MAY01A004	C20MAY01A003
Filename	G410241_yellow	G410241_yellow	G410241_yellow	G410241_yellow	G410241_yellow	G410241_yellow
Sample	3	3	3	3	3	3
	not Ruby					
Spot Size (µm)	51	51	51	51	51	51
7Li	0.000	0.000	0.000	0.000	0.000	0.000
9Be	<0.000	< 0.000	<0.000	<0.000	< 0.000	< 0.000
11B	0.022	0.020	0.016	0.018	0.020	0.022
23Na	0.004	0.003	0.002	0.004	0.006	0.004
24Mg	47.987	47.991	48.301	48.108	48.305	47.987
27Al	0.530	0.544	0.460	0.545	0.479	0.530
29Si	46.509	47.462	47.080	47.668	46.828	46.509
31P	0.006	0.006	0.005	0.006	0.008	0.006
39K	0.002	0.002	0.002	0.003	0.005	0.002
44Ca	0.020	0.022	0.021	0.024	0.025	0.020
45Sc	0.000	0.001	0.000	0.002	0.000	0.000
49Ti	0.006	0.008	0.005	0.011	0.005	0.006
51V	0.001	0.002	0.001	0.002	0.001	0.001
53Cr	0.126	0.184	0.145	0.291	0.188	0.126
55Mn	0.169	0.157	0.126	0.146	0.119	0.169
57Fe	4.312	3.293	3.502	2.908	3.672	4.312
59Co	0.006	0.006	0.006	0.005	0.005	0.006
60Ni	0.266	0.239	0.278	0.226	0.270	0.266
65Cu	0.000	0.000	0.000	0.000	0.001	0.000
66Zn	0.030	0.058	0.047	0.031	0.060	0.030
71Ga	0.000	0.000	0.000	0.000	0.000	0.000

LJN2020-005-NE Tas gems-v7

Page 31 of 52

Source	C20MAY01A003	C20MAY01A004	C20MAY01A004	C20MAY01A004	C20MAY01A004	C20MAY01A003
Filename	7.csv C410241 vallaru	C410241 vallage	C410241 vallage	Z.CSV C410241 vallass	5.CSV C410241 vallary	7.CSV C410241 wellow
Sample	3	3	3	3	3	3
Bampie	5	5	5	5	2	5
-	not Ruby	not Ruby	not Ruby	not Ruby	not Ruby	not Ruby
85Rb	0.000	0.000	0.000	0.000	0.000	0.000
88Sr	0.000	0.000	0.000	0.000	0.000	0.000
89Y	0.000	0.000	0.000	0.000	0.000	0.000
90Zr	0.000	0.000	0.000	0.000	0.000	0.000
93Nb	0.000	0.000	0.000	0.000	0.000	0.000
98Mo	0.000	0.000	0.000	0.000	0.000	0.000
118Sn	0.000	0.000	0.000	0.000	0.000	0.000
137Ba	0.000	0.000	0.000	0.000	0.000	0.000
139La	0.000	0.000	0.000	0.000	0.000	0.000
140Ce	0.000	0.000	0.000	0.000	0.000	0.000
146Nd	0.000	0.000	0.000	0.000	0.000	0.000
147Sm	0.000	0.000	0.000	0.000	0.000	0.000
172Yb	0.000	0.000	0.000	0.000	0.000	0.000
178Hf	0.000	0.000	0.000	0.000	0.000	0.000
181Ta	0.000	0.000	<0.000	0.000	0.000	0.000
182W	0.000	0.000	0.000	0.000	0.000	0.000
208Pb	0.002	0.002	0.002	0.003	0.003	0.002
232Th	0.000	0.000	0.000	0.000	0.000	0.000
238U	0.000	0.000	0.000	0.000	0.000	0.000

Appendix 1: Zircon dating by LA-ICPMS, University of Tasmania

file	reg no	Loc	age	+/-1 ster
			207 cor 206F	Ъ/238U
C20APR30A0042.csv	G410292-c	Black ck rd	91	4
C20APR30A0043.csv	G410292-c	Black ck rd	207	5
C20APR30A0047.csv	G410292-c	Black ck rd	216	3
C20APR30A0041.csv	G410292-c	Black ck rd	228	3
C20APR30A0027.csv	G410292-c	Black ck rd	235	4
C20APR30A0036.csv	G410292-c	Black ck rd	236	4
C20APR30A0035.csv	G410292-c	Black ck rd	238	4
C20APR30A0045.csv	G410292-c	Black ck rd	243	3
C20APR30A0046.csv	G410292-c	Black ck rd	245	3
C20APR30A0034.csv	G410292-c	Black ck rd	246	3
C20APR30A0050.csv	G410292-r	Black ck rd	74	6
C20APR30A0037.csv	G410292-r	Black ck rd	223	5
C20APR30A0048.csv	G410292-r	Black ck rd	230	3
C20APR30A0038.csv	G410292-r	Black ck rd	231	3
C20APR30A0040.csv	G410292-r	Black ck rd	234	4
C20APR30A0026.csv	G410292-r	Black ck rd	234	3
C20APR30A0039.csv	G410292-r	Black ck rd	236	4
C20APR30A0049.csv	G410292-r	Black ck rd	236	7
C20APR30A0044.csv	G410292-r	Black ck rd	238	5
C20APR30A0025.csv	G410292-r	Black ck rd	242	3
C20APR30A0054.csv	G410293-c	Mother Logans	42	5
C20APR30A0053.csv	G410293-c	Mother Logans	43	3
C20APR30A0073.csv	G410293-c	Mother Logans	43	4
C20APR30A0072.csv	G410293-c	Mother Logans	44	4
C20APR30A0074.csv	G410293-c	Mother Logans	44	1
C20APR30A0066.csv	G410293-c	Mother Logans	215	6
C20APR30A0067.csv	G410293-c	Mother Logans	238	4
C20APR30A0057.csv	G410293-c	Mother Logans	245	2
C20APR30A0062.csv	G410293-c	Mother Logans	246	2
C20APR30A0068.csv	G410293-c	Mother Logans	247	3
C20APR30A0051.csv	G410293-r	Mother Logans	41	2
C20APR30A0052.csv	G410293-r	Mother Logans	42	10
C20APR30A0069.csv	G410293-r	Mother Logans	43	2
C20APR30A0071.csv	G410293-r	Mother Logans	43	1
C20APR30A0070.csv	G410293-r	Mother Logans	44	2
C20APR30A0064.csv	G410293-r	Mother Logans	217	3

LJN2020-005-NE Tas gems-v7

Page 33 of 52

file	reg no	Loc	age	+/-1 ster
C20APR30A0065.csv	G410293-r	Mother Logans	233	6
C20APR30A0056.csv	G410293-r	Mother Logans	242	3
C20APR30A0055.csv	G410293-r	Mother Logans	246	2
C20APR30A0063.csv	G410293-r	Mother Logans	247	3
C20APR30A0100.csv	G410294-c	Main ck,	177	5
C20APR30A0099.csv	G410294-c	Main ck,	185	4
C20APR30A0096.csv	G410294-c	Main ck,	233	5
C20APR30A0095.csv	G410294-c	Main ck,	234	4
C20APR30A0091.csv	G410294-c	Main ck,	235	3
C20APR30A0084.csv	G410294-c	Main ck,	236	3
C20APR30A0080.csv	G410294-c	Main ck,	237	3
C20APR30A0092.csv	G410294-c	Main ck,	239	3
C20APR30A0079.csv	G410294-c	Main ck,	240	4
C20APR30A0078.csv	G410294-c	Main ck,	242	3
C20APR30A0098.csv	G410294-r	Main ck,	210	3
C20APR30A0081.csv	G410294-r	Main ck,	229	3
C20APR30A0083.csv	G410294-r	Main ck,	234	3
C20APR30A0082.csv	G410294-r	Main ck,	238	3
C20APR30A0076.csv	G410294-r	Main ck,	239	3
C20APR30A0075.csv	G410294-r	Main ck,	241	4
C20APR30A0094.csv	G410294-r	Main ck,	241	4
C20APR30A0077.csv	G410294-r	Main ck,	243	6
C20APR30A0093.csv	G410294-r	Main ck,	245	3
C20APR30A0097.csv	G410294-r	Main ck,	259	5
C20APR30A0124.csv	G410295-c	Frome R	226	4
C20APR30A0113.csv	G410295-c	Frome R	232	4
C20APR30A0104.csv	G410295-c	Frome R	238	5
C20APR30A0108.csv	G410295-c	Frome R	239	2
C20APR30A0125.csv	G410295-c	Frome R	239	3
C20APR30A0112.csv	G410295-c	Frome R	240	3
C20APR30A0124.csv	G410295-c	Frome R	240	2
C20APR30A0122.csv	G410295-c	Frome R	242	4
C20APR30A0103.csv	G410295-c	Frome R	242	4
C20APR30A0107.csv	G410295-c	Frome R	242	2
C20APR30A0123.csv	G410295-c	Frome R	245	2
C20APR30A0114.csv	G410295-c	Frome R	246	4
C20APR30A0121.csv	G410295-r	Frome R	224	3
C20APR30A0105.csv	G410295-r	Frome R	231	2
C20APR30A0101.csv	G410295-r	Frome R	238	4
C20APR30A0110.csv	G410295-r	Frome R	238	4
C20APR30A0109.csv	G410295-r	Frome R	239	4
C20APR30A0102.csv	G410295-r	Frome R	239	4
C20APR30A0106.csv	G410295-r	Frome R	240	2

LJN2020-005-NE Tas gems-v7

Page 34 of 52

file	reg no	Loc	age	+/-1 ster
C20APR30A0111.csv	G410295-r	Frome R	240	3
C20APR30A0120.csv	G410295-r	Frome R	242	2
C20APR30A0119.csv	G410295-r	Frome R	243	2
C20APR30A0149.csv	G410296-c	Weld R	186	3
C20APR30A0132.csv	G410296-c	Weld R	212	4
C20APR30A0133.csv	G410296-c	Weld R	228	3
C20APR30A0150.csv	G410296-c	Weld R	237	3
C20APR30A0139.csv	G410296-c	Weld R	239	3
C20APR30A0128.csv	G410296-c	Weld R	241	4
C20APR30A0129.csv	G410296-c	Weld R	241	3
C20APR30A0138.csv	G410296-c	Weld R	241	3
C20APR30A0137.csv	G410296-c	Weld R	246	3
C20APR30A0141.csv	G410296-r	Weld R	118	4
C20APR30A0127.csv	G410296-r	Weld R	218	5
C20APR30A0134.csv	G410296-r	Weld R	234	5
C20APR30A0130.csv	G410296-r	Weld R	237	3
C20APR30A0136.csv	G410296-r	Weld R	239	4
C20APR30A0140.csv	G410296-r	Weld R	239	3
C20APR30A0131.csv	G410296-r	Weld R	241	3
C20APR30A0126.csv	G410296-r	Weld R	241	4
C20APR30A0148.csv	G410296-r	Weld R	243	3
C20APR30A0135.csv	G410296-r	Weld R	244	4

Appendix 3: Ar/Ar Geochronology report

Report UM20-0801

⁴⁰Ar/³⁹Ar step-heating analysis of basanite groundmass sample R013378/NJ449E. Matchan

School of Earth Sciences The University of Melbourne Parkville, VIC, 3010. January 2020

1. Introduction

John Everard, Mineral Resources Tasmania supplied a basanite whole-rock specimen, NJ449 R013378, to UoM (Erin Matchan) for ⁴⁰Ar/³⁹Ar dating. John Everard inspected petrographic thin-sections prepared from the core of the specimen and observed "some very minor brown alteration (probably hisingerite) of olivine, and also immediately adjacent to a few hair-line fractures, but we can't detect any glass."

2. Analytical procedures

A groundmass concentrate was prepared using standard crushing, sieving, desliming and magnetic separation methods. Grains were hand-picked under binocular microscope, avoiding visibly altered fragments and phenocrysts/xenocrysts. Grains were cleaned in an ultrasonic batch with 5% HNO3 (10 min²), followed by deionised water and acetone. Samples were enclosed in aluminium foil packets and placed into a quartz glass irradiation canister (Can UM#88) together with aliquots of the neutron flux monitor Fish Canyon Tuff (FCT) sanidine (Age = 28.1260 ± 0.0093 Ma (1 σ); Phillips et al., 2017). The canister was irradiated for 40 MWhr in the CLICIT facility of the Oregon State University TRIGA reactor, USA.

After irradiation, the mineral separate was removed from its packaging and aliquots of ~5 mg were placed into a custom-designed copper laser sample tray. 40Ar/39Ar step-heating analyses were carried out on a Thermofisher ARGUSVI multi-collector mass spectrometer following procedures previously described by Matchan and Phillips (2014). Samples were outgassed using the 6 mm beam homogenized beam of a Photonmachines Fusions 10.6 CO₂ continuous wave laser operated at low power (1–2%) to remove the bulk of atmospheric argon and were then step-heated

LJN2020-005-NE Tas gems-v7

Page 36 of 52

Commented [CT4]: Another Extract?

over 3– 35% laser power. Blanks were monitored routinely and subtracted from sample measurements. Blanks were negligible compared to sample signals (2–6 f A 40 Ar blank compared to typical sample values of 500–2000 fA; **Table A1**). Analytical results are summarised below and detailed in the data appendix (**Table A1 & A2**). Unless otherwise stated, reported uncertainties are two standard deviations. Inclusion of errors in the J-value and age of flux monitor (FCT sanidine) have a negligible impact on uncertainties. Decay constants are those of Steiger & Jaeger (1977). The 40 Ar/³⁹Ar dating technique is described in detail by McDougall and Harrison (1999).

3. 40Ar/39Ar Analytical Results

The four aliquots analysed (R013378/NJ449-1,-2,-3 and -4) produced discordant age spectra characterised by younger apparent age for the initial 1–2 steps (18(±1)-43.7(±0.2) Ma) followed by a broad decrease in apparent ages from 47.2(±0.1)–49.5(±0.1) Ma to 41.4(±0.1)–42.0(±0.1) Ma with increasing temperature (**Fig. 1**). Aliquots R013378/NJ449-2 and R013378/NJ449-3 yielded slightly older apparent ages of 42.6 ±0.3 Ma and 43.4 ±0.1 Ma, respectively, for the final heating (fusion) steps (**Fig. 1b,c**).

Total gas ages are slightly discordant at the 2s-level: 45.4 ± 0.1 Ma (R013378/NJ449- 1), 44.1 ± 0.2 Ma (R013378/NJ449-2), 43.7 ± 0.1 Ma (R013378/NJ449-3), and 44.8 ± 0.1 Ma (R013378/NJ449-4).

Figure 1. ⁴⁰Ar/³⁹Ar age spectra for N3449 R013378, groundmass aliquots.

Robust inverse isochrons could not be generated due to the high-scatter of data in 36 Ar/ 40 Ar vs. 39 Ar/ 40 Ar space (**Fig. 2**). The intermediate data (steps 3–8) for the aliquot with least discordant age spectrum, R013378/NJ449-1, yield a non-robust (as indicated by the high mean square weighted deviation (MSWD) value) inverse isochron (**Fig. 2a**) with an age of 46.15 ± 0.49 Ma (95% CI; MSWD = 14, p = 0) and a corresponding atmospheric (40 Ar/ 36 Ar)_i value of 300.2 ± 9.6 (95% CI).

LJN2020-005-NE Tas gems-v7

Page 38 of 52

4. Discussion

Young initial apparent ages followed by largely decreasing apparent ages are often observed for fine-grained mafic volcanic groundmass samples (e.g. Jourdan and Renne, 2014; Heath et al., 2018). This pattern is widely considered to reflect submicrometer scale nuclear recoil of ³⁹Ar and ³⁷Ar between fine-grained K-rich/Ca-poor and K-poor/Ca-rich phases during neutron irradiation, leading to decoupling of ⁴⁰Ar*/³⁹Ar ratios referred to as 'argon recoil loss/redistribution'. ³⁹Ar recoil loss/redistribution in particular affects argon isotope systematics such that inverse isochron analysis is compromised and can serve only as a first-order check for the presence of excess ⁴⁰Ar in the samples. Absolute initial (⁴⁰Ar/³⁶Ar) ratios

LJN2020-005-NE Tas gems-v7

Page 39 of 52

((⁴⁰Ar/³⁶Ar)_i) values are unreliable for severely recoil-affected samples, as are inverse isochron ages. For this reason, the crystallisation age is predicted to be intermediate between the oldest and youngest apparent ages for the descending portion of the age spectrum, and the total gas age is thus considered a good approximation for the crystallization age (Jourdan and Renne, 2014). The increase to slightly older apparent ages for the fusion steps of Aliquots #1 and #2 may reflect outgassing of solid inclusions containing small amounts of extraneous ⁴⁰Ar. Assuming that argon recoil redistribution is the cause of the descending age spectrum shape, and that there has been no significant amount of ³⁹Ar- or ⁴⁰Ar-loss, the total gas ages should approximate the crystallisation age. The atmospheric $({}^{40}\text{Ar}/{}^{36}\text{Ar})_i$ value (300.2 ± 9.6 (95% CI; MSWD = 14, p = 0) defined by the intermediate heating steps of aliquot R013378/NJ449-1 supports negligible ³⁹Ar- or ⁴⁰Ar-loss, and negligible excess ⁴⁰Ar. The total gas ages for each aliquot are slightly discordant at the 2s-level, ranging from 43.7 ±0.1 Ma to 45.4 ±0.1 Ma (2o), giving a non-robust weighted mean value of 44.6 ±1.3 Ma (95%CI; MSWD = 207; p = 0) and an arithmetic mean of 44.5 Ma. A range of $42.0(\pm 0.1)-47.2(\pm 0.1)$ Ma (2σ) , defined by the youngest age yielded by the first step of the descending portion of an age spectrum (R013378/NJ449-1b) and the oldest age yielded by the final step of the descending portion (R013378/NJ449-3i). Given the discordance of the total gas ages, the range of $42.0(\pm 0.1)-47.2(\pm 0.1)$ Ma (2σ) is considered a more conservative and reliable estimate for the crystallisation age than the narrower total gas age range.

References

- Jourdan, F., Renne, P.R., 2014. Neutron-induced ³⁷Ar recoil ejection in Ca-rich minerals and implications for ⁴⁰Ar/³⁹Ar dating. Geological Society, London, Special Publications 378, 33.
- Lee, J.-Y., Marti, K., Severinghaus, J., Kawamura, K., Yoo, S.-S., Lee, J., Kim, J., 2006. A redetermination of the isotopic abundances of atmospheric Ar. Geochimica et Cosmochimica Acta 70, 4507–4512.
- Ludwig, K., 2012. User's Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel. Spec. Publ. No. 5, Berkeley Geochronology Center, Berkeley, California 75.
- McDougall, I., Harrison, T.M., 1999. Geochronology and Theromochronology by the ⁴⁰Ar/³⁹Ar Method, 2nd ed. Oxford University Press, New York.

LJN2020-005-NE Tas gems-v7

Page 40 of 52

- Phillips, D., Matchan, E.L., 2013. Ultra-high precision ⁴⁰Ar/³⁹Ar ages for Fish Canyon Tuff and Alder Creek Rhyolite sanidine: New dating standards required? Geochimica et Cosmochimica Acta 121, 229–239.
- Phillips, D., Matchan, E.L., Honda, M., Kuiper, K.F., 2017. Astronomical calibration of ⁴⁰Ar/³⁹Ar reference minerals using high-precision, multi-collector (ARGUSVI) mass spectrometry. Geochimica et Cosmochimica Acta 196 IS -, 351–369.
- Steiger, R.H., Jäger, E., 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359-362.

Appendix 4: SAPPHIRES in Tasmania

R Bottrill

Mineral Resources Tasmania Rosny Park, TAS, Australia Ralph.Bottrill@stategrowth.tas.gov.au

David McP Duncan

Kingston, Tasmania

dmcpduncan@gmail.com

Many significant occurrences of sapphire are known in Tasmania. and most of these occur in alluvial tin-bearing Cainozoic sediments in northeast Tasmania (Bottrill, 1996, McGee, 2005, Bottrill & Mathews, 2006, Sutherland & Webb, 2007, Bottrill & Baker, 2008). Small scale mining and prospecting is periodically undertaken for sapphires but many were recovered as a by-product of alluvial tin mining operations in northeast Tasmania, most of which ceased in the 1970s. Van Dieman Mines plc initiated mining operations near Gladstone in northeast Tasmania particularly for cassiterite and sapphire, but the operations closed before there was any significant production.

The sapphires are typically a medium to dark blue (~80%), but range from colourless to yellow, green, pink, purple and black. Star sapphires and pale ruby or pink sapphires have been recorded in several areas. Parti-coloured stones are not uncommon, usually with blue and yellow-green colours. One stone with a pink triangular core and a blue outer zone has been seen. The largest recorded sapphire is a 52.8 g (264 carats) parti-coloured stone from the Weld River area, but most are much smaller (Bottrill & Baker, 2008).

LJN2020-005-NE Tas gems-v7

Page 42 of 52

Commented [CT5]: Is this an extract? Is it needed here?

They are most abundant in the north-eastern tin fields, particularly in the Ringarooma River drainage basin at Branxholm, Derby, Gladstone, Lottah, George River, Moorina, Mt Stronach, Mt Cameron, Thomas Plain and especially the Weldborough -Weld River area (Bottrill, 1996; Fig. 1). Cassiterite, topaz, zircon, olivine ("peridot") and black "pleonaste" spinel are typically associated, plus sparse green "cats-eye" chrysoberyl. These minerals may have mixed sources, some from Devonian granitoids (cassiterite, zircon and topaz) whilst olivine and spinel are sourced from Paleogene basalts (Yim et al., 1985). Various forms of gem quartz can be found in many sapphire-bearing gravels including rock crystal, amethyst, citrine, rose quartz and smoky guartz, probably mostly derived from Devonian and older rocks. Minor almandine, and alusite and gold locally occur in association. Other areas with sapphires reported include The Lisle goldfield, Coles Bay and Launceston in the northeast, Cygnet and Huonville in the southeast, Adamsfield in the southwest and Boat Harbour - Sisters Creek, Blythe River, Table Cape, Bell Mount, Stanley River, and Heazlewood River in the northwest (Bottrill and Baker, 2008, Bottrill and Mathews, 2006, Bottrill, 1996, Fig. 1).

Fig. 1. Sapphire locations in Tasmania.

Ruby has also been reported rarely from the tin workings in northeastern Tasmania, but has not been confirmed chemically or mineralogically (Tasmania Department of Mines, 1970). Some of these stones may actually be red zircons (W. L. Mathews, pers. comm.), although Boyd Sweeney, a germologist, has stated (pers. comm.) that he has received a positive response to a Chelsea Filter optical test for ruby on one pink stone.

LJN2020-005-NE Tas gems-v7

Page 44 of 52

Some source rocks for the sapphires have recently been determined. One probable direct source rock is small plug of inclusion-rich basalt of possible breccia pipe origin surrounded by Devonian granite on Logans Road, near Priory, east of St Helen's, which has been found to have sapphires as detrital grains in the surrounding headwater drainage as well as abundant pleonaste spinel, zircon, pyroxene and olivine. The mineral grain shapes are juvenile with little or no transport abrasion and are obviously adjacent to source. This area is undisturbed by tin mining. During the search for sapphires in the drainage, it became apparent that the creeks contained variably weathered boulders and pebbles of the adjacent basalt with many mineral grains emergent and readily identifiable on the soft, brown weathered surfaces. Eventually, with persistence, a 7mm blue to grey sapphire, as a single subrounded/subangular grain with a distinct parting, was found partly exposed in an a weathered, inclusion-rich basalt pebble (Figs. 2 & 3) by a prospector, Michael Lloyd (Duncan & Lloyd, 2013). Thus at least some of the Tasmanian sapphires have a basaltic source.

The sapphire sources in other areas are uncertain but Tertiary (Paleogene) basalt flows are present in most of the sapphire-bearing drainage basins, eg. the Ringarooma River valley and with most occurrences in the Northwest of Tasmania. The basalts include some eruptive centres, locally containing xenoliths of peridotite (some with spinel), and sparse felsic clasts like anorthoclasite and sanidinite. These rocks suggest a deep crustal source similar to some of the related sapphire occurrences in Queensland (Robertson & Sutherland, 1992).

LJN2020-005-NE Tas gems-v7

Page 45 of 52

Fig. 2. Sapphire in weathered basalt pebble, Logans Road Area. Field of view about 12cm.

LJN2020-005-NE Tas gems-v7

Page 46 of 52

Fig. 3 Sapphire (close up of above sapphire). Field of view about 3cm.

LJN2020-005-NE Tas gems-v7

Page 47 of 52

McGee (2005) studied the sapphires from Weldborough and found they contain olivine, feldspar, spinel, zircon, molybdenite and Nb-Ta-rich phases as mineral inclusions. The composition of zircon inclusions indicates a highly evolved source. Primary fluid inclusions indicate a minimum trapping pressure of 4.5 kbar at 1000 to 1200°C. LA-ICPMS analysis indicates the sapphires have Fe, Ti, Ga and Ta as the most abundant trace elements; Cr, Be, Mg, V and Nb are low. Two element associations were recognised in the sapphires: an Fe-V-Ga association and an Nb-Ta-Be association, the latter consistent with either a granite pegmatite or a carbonatite origin. O-isotope values of + 4.4 ‰ to + 6.3 ‰, indicate the sapphires are in O-isotope equilibrium with mantle rocks, with little or no crustal interaction. The zircon inclusions in the sapphires have a U-Pb age of 47±4 Ma which is identical to the age of the (Eocene) Weldborough basalts, indicating they have been reset during entrainment in basaltic magma. In summary, McGee considered the Weldborough sapphires were probably sourced in carbonatitic rocks of the upper mantle and entrained and brought to the surface by the Weldborough basalts 47 million years ago.

Khin Zaw, et al. (2006) also found sapphires from Weldborough to be magmatic with CO₂-rich fluid inclusions and Fe and Ti as chromophores. Geochronology on companion zircons suggests several sources (from 290 Ma to 47 Ma) which were intruded and sampled by post Eocene basaltic melts (<47 Ma). The valley basalts are mostly Miocene in age (<23 Ma).

Another potential sapphire source is within the Cambrian Mt Read Volcanics in the Bond Range, Central North Tasmania, where corundum – andalusite - diaspore rocks occur in intensely altered felsic volcanics, although gem quality sapphires have not been found in this occurrence (Bottrill, 1998).

References

Bottrill, R. S.; 1996, Corundum and sapphire in Tasmania. *Tasmanian Geological Survey, Unpub. Rept.* 1996/05

Bottrill, R. S., 1998, A Corundum-quartz assemblage in altered volcanic rocks, Bond Range, Tasmania. *Mineralogical Magazine,* v. 62, p. 325-332.

LJN2020-005-NE Tas gems-v7

Page 48 of 52

Bottrill, R.S., and Mathews, W.L., 2006. Occurrences of gemstone minerals in *Tasmania*. Mineral Resources Tasmania

Bottrill, R.S. & Baker, W.E., 2008, *A Catalogue of the Minerals of Tasmania.* Bull. 73. Tasmanian Geological Survey

Duncan, D.McP and Lloyd, M, 2013. The discovery and exploration of the Priory Sapphire Field. Unpublished Report for RG Prospecting.

Khin Zaw, Sutherland, F. L. Dellapasqua, F., Ryan, C.G., Yui, Tzen-Fu, Mernagh, T.P. and Duncan, D.McP, 2006. Contrasts in gem corundum characteristics, eastern Australian basaltic fields: Trace elements, fluid/melt inclusions and oxygen isotopes. *Mineralogical Magazine* 70(6):669-687

McGee, B. M., 2005, Characteristics and origin of the Weldborough sapphire, NE Tasmania. Unpub Hons thesis, U.Tas.

Robertson ,**A.D.C.; Sutherland**, **F. L.** 1992. Possible origins and ages for sapphire and diamond from the central Queensland gem fields. *Records of the Australian Museum Supplement* 15:45–54

Sutherland, F. L., Webb, G.B., 2007. Australian Sapphires and Rubies. *Rocks & Minerals* • March 2007. 82.2. p116-139

Tasmania Department of Mines, 1970 Occurrences of gemstone minerals in Tasmania. Mineral Resources Tasmania

YIM, W.W.-S., GLEADOW, A.J.W. & VAN MOORT, J.C., 1985: Fission track dating of alluvial zircons and heavy mineral provenance in North-east Tasmania. *J. Geol. Soc. Lond.* 142: 351-356.

Appendix 5. Whole rock analyses

MRT Reg No	R013378	75/375	76/854	
Field No	NJ449	MBT13	MBT128	
Analysis No.	20100107	20080316	762462	
	Logans			
Other ID	Rd	Halfway Hi	II	
mEgda94	595052	597312	597312	
mNgda94	5436443	5435006	5434883	
SiO2	43.36	44.45	44.70	
TiO2	2.28	2.60	2.60	
Al2O3	13.09	14.50	14.80	
Fe2O3	2.83	3.39	3.30	
FeO	8.20	7.80	8.30	
MnO	0.19	0.21	0.21	
MgO	11.70	8.15	7.70	
CaO	9.80	9.01	8.70	
Na2O	3.66	3.95	4.80	
К2О	1.37	2.23	1.20	
P2O5	0.74	0.81	0.87	
H2O+	2.44	2.16	1.90	
H2O-	nd	nd	0.12	
CO2	0.10	0.10	nd	
S	<0.01	nd	nd	
SO3	<0.02	0.02	nd	
CI	0.02	nd	nd	
TOTAL	99.76	99.39	99.20	
LOI*	1.63	1.39		
Mg# (0.20)*	69.61	61.25	58.97	

	R013378	75/375	76/854	76/854
trace				
method	XRF	XRF	XRF	ICPMS
Li	nd	nd	29	8.32
Ве	nd	nd	nd	3.47
Sc	20	17	nd	18.41
Ті	nd	nd	nd	17993
v	190	155	134	170.75
Cr	490	230	326	232.32
Со	54	47	41	38.11
Ni	310	165	145	152.46
Cu	60	54	52	54.46
Zn	89	100	100	94.34

LJN2020-005-NE Tas gems-v7

Page 50 of 52

	R013378	75/375	76/854	76/854
trace				
method	XRF	XRF	XRF	ICPMS
Ga	18	21	nd	17.11
As	5	<20	nd	nd
Rb	33	63	45	52.67
Sr	900	1350	1180	1100.56
Y	27	34	33	33.62
Zr	250	380	339	316.14
Nb	76	105	85	134.48
Мо	6	6	nd	9.13
Cd	nd	nd	nd	0.06
Sn	2	<9	nd	3.7
Sb	<2	nd	nd	0.15
Cs	<3	nd	nd	0.68
Ва	450	620	660	537.38
La	53	78	nd	67.68
Ce	105	130	nd	119.32
Pr	nd	nd	nd	14.62
Nd	49	62	nd	53.4
Sm	nd	nd	nd	9.59
Eu	nd	nd	nd	3.01
Gd	nd	nd	nd	8.56
Tb	nd	nd	nd	1.22
Dy	nd	nd	nd	6.4
Но	nd	nd	nd	1.16
Er	nd	nd	nd	3.04
Yb	nd	nd	nd	2.55
Lu	nd	nd	nd	0.36
Hf	nd	nd	nd	6.49
Та	nd	nd	nd	9.72
W	<2	<10	nd	2.5
Pb	2	<10	nd	4.78
Bi	2	<5	nd	nd
Th	6	11	nd	8.67
U	2	<10	nd	2.38
CIPW				
norms*	-			
or	8.33	13.58	7.32	
ab	8.49	11.59	19.12	
an	15.69	15.69	15.73	
ne	12.67	12.41	12.32	
di	23.65	20.28	18.65	
ol	22.19	16.64	16.80	
mt	2.72	2.75	2.85	

LJN2020-005-NE Tas gems-v7

Page 51 of 52

	R013378	75/375	76/854	76/854
trace				
method	XRF	XRF	XRF	ICPMS
il	4.46	5.10	5.08	
ар	1.80	1.97	2.05	
total	100.00	100.00	99.92	
An(plag)				
mol%	63.52	56.06	43.67	
*calculated a				