TRI5-179-182

R.614. Barytes concentration tests

A barytes chip sample which was stated to have come from the St Valentines Peak area was supplied by L.H. McNeair for barytes concentration tests.

SAMPLE PREPARATION

The ore as received was in large chip form. It was staged crushed to $-\frac{1}{4}$ in in a Chipmunk laboratory jaw crusher, mixed, then riffled to provide samples for:

- (1) Flotation tests
 - (2) Gravity concentration
 - (3) Magnetic separation
 - (4) Head assay (this R.614 head sample was later given the registered number 700941).

PROCEDURE

Flotation

One kilogram samples of the $-\frac{1}{4}$ in ore were batch ground in a laboratory ball mill for an arbitrary grinding time of 10 minutes. Grinding was carried out at 60% solids. The ground ore was washed into a Denver laboratory flotation cell for flotation under various conditions, in an attempt to find a satisfactory process for concentration of the barytes. Flotation reagents and conditions are shown in Table 1. Flotation time, and accurate pH values were not measured at this preliminary stage.

Gravity concentration

A portion of the ore was wet screened to provide the following sized fractions for heavy liquid separation:

The -200# fraction was gravity concentrated on a Deister slime table as it was considered too small in particle size for heavy liquid separation. The heavy liquid used was acetylene tetrabromide which has a specific gravity of 2.95.

Magnetic separation

Portions of the ore were wet and dry screened to provide the fractions: -10# +22# and -22# +60# for magnetic separation. The non-magnetic fraction of both sized fractions was further concentrated by heavy liquid separation.

RESULTS

Head assay

Ba	50.3%	i.e.	85.5%	barytes	Pb	Nil
SO4	36.5%			ACCIONAL MARKETICA	Ca	2.3%

NOTES. 1. Reagent quantity shown is in 1b/short ton.

2. In test N11 an attempt was made to float first the impurities, then the barytes.

Test	nzai	Fraction	off #	% Wt	397 8	% Ba	% Distn	Ba
NI		FC	2128	67.9	8,65	53.1	71.7	W10
		FT	(8.8)	32.1	4,10	(44.4)	28.3	
		Head	2.00	100.0	0.00	50.3	100.0	
N2		Slime		13.2		46.6	194 12.2	
		FC	67.9	11.4		51.7	\$34 11.7	
		FT				(50.7)	76.1	
		Head	50.3	100.0	0,00	50.3	100.0	
N3		Slime		11.9		49.0	11.6	
		FC		86.9		51.7	84.2	avity Concen
		FT	e8.4	6.2		(34.3)	4.2	
	6.99	Head	83.4	100.0	8:44	50.3	100.0	in at the
N/ 4				12.0	1,44	40.0	20 E 10 10 10 10 10 10 10 10 10 10 10 10 10	4 m2 H-
N4	1.81	Slime		13.0		49.2	12.7	- EOS -
	7.7			76.2		56.9	86.2	-228 W
	0,0	FT	5.50	10.8	0.8	(5.1)	1.1	# B001-
	8.8	Head	e.aa	100.0	2.5	50.3	100.0	-200#
N5	8.00	Slime		11.1	1.88	47.3	10.4	
		F2T	10.0	2.5		38.6	1.9	
	O.4 Erace	F2C	2.77	38.9	8-0	57.8	44.7	is pt f-
		FlC	4.76	41.4		(56.6)	46.6	4 90.E-
		FlT	22.5		8.0	(45.5)	43.0	o 400-
			444		3-4	(13.5)	100F B/L P/T	-1,00,1- -2009
	4.5	Head	0.50	100.0	5.6	50.3	100.0	
N6	6.7	F2T		8.0	0.11	36.2	5.8	
		F2C		80.1		55.4	88.2	
	E.E0		28.40		6.11	/F2 7\	apygzineom er gillio	Englett
		FlC		00.1		(53.7)	94.0	
		FlT	0.08	11.9	0.00	(25.5)	6.0	B/sk/R
cult.	tilib	Head		100.0		50.3	100.0	
N7		FC		36.2		55.9	40.2	
		FT		63.8		(47.1)	59.8	
		Head	OF AD	100.0		50.3	100.0	akaylama N-magmetic K
admiomi		deff , thet	visional	dayot	DEW	E . at	TOTAL REDBILATTO	Mil Anney Jen
N8			end in				63.7	Miles Deskin
		FT		44.2	historic	(41.3)	36.3	
		Head	yd fis	100.0	s ad	50.3	100.0	(1) 89,2
Adl TN9 30	9787	FC 28 858		78.1		57.8	89.7	
		FT		21.9		(23.6)	10.3	
		#0.00-000		olbni	- 1	es, col	fautinomon, its	(2) (0)
		Head		100.0		50.3	100.0	

Test		Fraction	% Ba	% Wt		% Ba	% Distn Ba	
NlO	71.7		55.1			53.3	37.7	fu
		FT	(44,4)	64.4		(48.6)	62.3	
		Head	6.00	100.0	0.30	50.3	100.0	
N11	12.2	FC1	0,00	9.5	13.2	34.5	emila 6.5	
	T.IJ	FC2	51.7	76.5	A.II	57.9	88.1	
	76.1	FT	50.7)	14.0	75,4	(19.5)	5.4	
	0.00	Head	6,08	100.0	0.00	50.3	100.0	
a.ti.			0.63		6.41		mm2.255	EW
Gravity Conce	entrati	lon	7.18					
	Fracti	ion	(E,JE	% Wt	6.18	% Ba	% Distn Ba	1
-14 in	+1 in	H/L S/K	\$108	44.6	0/00	52.4	45.9	
-% in	+10#	H/L S/K		14.1	0.00	53.4	14.8	
-10#	+22#	H/L S/K	B.38	12.0	27 1 100	55.6	13.1	
-22#	+100#	H/L S/K	(5.1)	6.9		56.9	7.7	
-100#	+200#	H/L S/K	(4.40)	8.0		57.3	9.0	
-200#		TC	50.3	2.5		56.9	2.8	
Total	Concer	ntrates	6.70	88.1	1.21	(53.9)	93.3	av.
$-\frac{1}{4}$ in	+1/2 in	H/L F/T	9788	2 0	815	6.61	0.4	
$-\frac{1}{8}$ in	+10#	H/L F/T		0.8		2.77		
-10#	+22#	H/L F/T	10.00	0.7		4.76	0.1	
-22#	+100#	H/L F/T		0.6		22.5	0.3	
-100#	+200#	H/L F/T		1.6		45.6	1.4	
-200#	0.00	mm		5.3		43.6	beell 4.5	
Total	Tailir	ngs	26.2	11.9	0.0	(28.8)	6.7	916
Total	Concer	ntrates	1-1	88.1	1,0	(53.9)	93.3	
Total	Tailir	ngs	53,7)	11.9	1.00	(28.8)	OIE 6.7	
Head	0.8	A) (1 = 1 = 1 = 1 = 2	(8.85	100.0	6.1	50.9	100.0	

NOTE: Gravity separation of the finer fractions was very difficult.

(47.1)

Magnetic Separation

Analysis of magnetic separation products was not carried out, as the non-magnetic fractions produced contained minor amounts of impurities even after heavy liquid separation. It was found however, that small amounts of iron bearing minerals could be removed from the ore.

CONCLUSIONS

(1) 89.7% of the barytes can be recovered by flotation at a grade of 98.2% using the collector Aeropromotor 825 at a rate of 0.7 lb/ short ton.

B.ES

- (2) Gravity concentration results indicate that 93.3% of the barytes may be recovered at a grade of 91.6%.
- (3) Magnetic separation can be used to remove minor amounts of iron bearing minerals from the ore.